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1 Introduction

We present a comprehensive, generalizable pipeline that delivers real-time point and dis-
tributional forecasts for key U.S. macroeconomic releases. Our goal is to create a stream-
lined framework that (i) ingests historical macroeconomic data, (ii) produces point/direc-
tional predictions, and (iii) defines calibrated prediction bands to quantify uncertainty to
assist with portfolio construction, position sizing, and risk management decisions ahead

of notable macroeconomic releases.

1.1 Scope

This study focuses on the Change in Nonfarm Payrolls (NFP TCH), released
monthly on the first Friday at 8:30 a.m. ET. NFP measures the net change in U.S.
non-farm employment and is generally regarded as the most influential labor-market in-
dicator for financial markets. It is a primary driver of interest rate expectations and
FX volatility, particularly in the immediate aftermath of its release where large surprises

have historically produced substantial knee-jerk market reactions.

By concentrating on a single, high-impact indicator, we conduct a targeted evaluation of
the proposed forecasting framework. While the empirical results presented are specific to
NFP, the analytical methodology is generalizable to other macroeconomic releases with

similar characteristics and sufficient forecast coverage.

2 Analytical Framework

We break down our unified analytical pipeline into five stages.

e Data: Each workbook is reshaped into a long panel and written to parquet. Schema
harmonization happens here, so all downstream code is indicator-agnostic and lends
to our framework’s generalizability. We restrict the analysis window to begin in
June 2003 (2003-06), coinciding with the introduction of the CES birth-death ad-

justment; pre-2003 vintages are excluded to avoid a methodology break.

e Exploration: Diagnostics such as rolling error plots, distribution tests (Ljung-Box,

Kolmogorov-Smirnov), and analytical regressions are run to detect regime shifts and
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inform subsequent modeling decisions.

Point and Directional Forecast Ensembles: We deploy five forecast engines:
(i) static inverse-error weighting, (ii) exponentially weighted moving averages, (iii)
soft Bayesian model averaging with Student-¢ likelihoods, (iv) multiplicative weights
update and (v) a robust majority-vote ensemble. For each method, hyperparameter
grids are traversed in walk-forward loops that yield out-of-sample smart predictions

and directional calls relative to the consensus median.

Distributional Engines: Four distributional forecasting methods are deployed
to quantify uncertainty: Student-¢, t-GARCH, Gaussian mixture models (GMM),
and Bayesian model averaging (BMA); an optional spread-elastic crisis multiplier
dynamically adjusts to time-varying volatility. For each distributional engine, the

result is a full predictive density and calibrated prediction intervals for every release.

Evaluation: A common rubric scores point, directional, and interval performance
(RMSE, DM; hit rate, binomial, PT; coverage targets and AC). Formal definitions
appear in §A.1.

Exploratory Analysis

3.1 Median-Error Distribution and the COVID Shock

We begin by inspecting the stability of consensus accuracy through time. Figure 1 plots

the 6-month rolling RMSE of the crowd median. The pandemic period features a vertical

spike that dwarfs the surrounding history, indicating that a handful of months dominate

squared-error risk. This motivates maintaining two evaluation panels throughout the

paper: a full panel (complete history, including the pandemic shock) and a COVID-

filtered panel that excludes the 2020-2022 extremes when we want to study typical

regimes. These findings also suggest that models have to be regime-aware.
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Figure 1: Six-month rolling RMSE of the crowd-median NFP forecast. The pandemic
shock generates a discontinuous jump in error magnitude, motivating the use of both full

and COVID-filtered panels.

3.2 Distributional form of median errors.

On the COVID-filtered panel, the distribution of median-forecast errors is well captured
by a symmetric, heavy-tailed Student-t. Figure 5 overlays the fitted t, (x4, o) density on the
histogram of median errors; Figure 3 shows a QQ-plot against the Normal, highlighting
tail deviations consistent with excess kurtosis. A formal goodness-of-fit check against the

fitted Student-t does not reject at conventional levels:

K-S vs. fitted t': D =0.036, p=0.9143 and  CvM? W?=0.022, p = 0.9947.

These diagnostics support using a Student-t baseline for error modeling.

20ne-sample Kolmogorov—Smirnov goodness-of-fit test comparing the empirical CDF of the median
errors to the fully specified Student-¢ CDF fitted by MLE; D = sup,, |F,,(z) — F(z)|. The null is that
the data are i.i.d. draws from that distribution.

2Cramér-von Mises goodness-of-fit test using the integrated squared difference [(F,(x) —
F(z))? dF(x), emphasizing overall shape rather than the single worst deviation. Same null as above.
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Histogram of median-forecast errors with fitted Student-t¢ overlay (COVID-

filtered panel). The fit captures central mass and tails.
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Figure 3: QQ-plot of median-forecast errors vs. Normal (COVID-filtered panel). System-

atic tail departures motivate heavy-tailed modeling.

Two consequences flow from this exploration:

1. Panel design. Because the pandemic months dominate RMSE, we report results on
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both the full and COVID-filtered panels to separate typical calibration from crisis

behavior.

2. Distributional choice. The adequacy of the Student-¢ fit informs our distributional
engines (§4.2.1, §4.2.2, §4.2.3, §4.2.4) and our soft-BMA weighting scheme (§4.1.3),

which explicitly leverages Student-t likelihoods to remain robust to fat tails.

3.3 Cross-Sectional Spread as an Ex-Ante Proxy of Forecast
Risk

Before the print we observe the cross-sectional spread of submitted forecasts, s; =
stdev{fi:}. After the print we observe the realized miss of the crowd median, |e;| =
| fmed — 4| If disagreement contains information about event risk, s; should co-move
with |e;]. This gives us an ex-ante knob to widen (or not) our prediction bands when
quantifying uncertainty:.

COVID-filtered Full sample
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Figure 4: Cross-section spread vs. absolute median error (COVID-filtered vs. full sample).

Table 1 reports linear (Pearson) and rank (Spearman) correlations between s; and |ey|.
The COVID-filtered panel shows small but statistically significant associations, while the
full sample shows a very strong Pearson correlation and a moderate Spearman correlation.
The gap between the Pearson and Spearman statistics suggests that a handful of extreme
months bend the relationship, which is precisely the regime where interval width matters

most.
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Table 1: Correlation between cross-sectional spread s; and absolute median error |e].

Panel Pearson r (p-val) Spearman p (p-val)
COVID-filtered  0.168 (0.0105) 0.182 (0.0057)
Full sample 0.710 (< 107%) 0.347 (< 107%)

We formalize the slope via a Newey—West OLS on logs (leveraging properties of elasticity
in a log-log regression),

Inle] = Bo+ frilns + ¢y,

so (1 is the elasticity of the miss with respect to spread. Results:

Table 2: Log—log regression In |e;| = 5y + 1 Ins; (HAC).

Panel N Bo B SE(B) p-val R?

COVID-filtered 228 2.596 0.312 0.224  0.164  0.009
Full sample 264 1.019 0.792 0.074 <1072 0.236

The COVID-filtered elasticity is small and statistically indistinguishable from zero; the
full-sample elasticity is = 0.79, highly significant. Interpretation: outside crises, disagree-
ment adds little incremental information; in crisis months, disagreement scales errors
almost proportionally on a log scale. The discrepancy in statistical significance of the
coefficients implies a dominance by a few enormous months and informs our choice of a

gated, crisis-dependent adjustment.

The elasticity Bl ~(0.79 suggests a transparent rescaling of any baseline half-width hy,:

Bt
5t adj
- e~ Ry
my (median{stk 1<k < 24}> ) Lyt mg - hpg

To avoid unnecessary widening in ordinary months (where the COVID-filtered slope is

weak), we gate the exponent:

0, s; < Petos{si—r : 1 < k <24},
By =
0.80, s; > Petos{s;_x: 1<k <24}.
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In doing so, we are able to (i) use the crowd’s contemporaneous disagreement s; as an ex-
ante stress proxy; (ii) anchor the curvature of the adjustment to the estimated elasticity
(=~ 0.8); (iii) activate only in the right tail of disagreement where both correlation and
regression signal are strongest; (iv) select the gating percentile via walk-forward coverage
validation (we use the 95th percentile heuristic; this can be scaled to account for sys-
tematic under- or overcoverage). The result is a crisis-elastic interval: tight in tranquil

regimes, wider exactly when disagreement telegraphs tail risk.

3.4 Cross-Section vs. Rolling Time-Series Student-t Coverage

Given the correlation between disagreement in the cross-section and median errors, we
might ask: can we calibrate reliable prediction intervals straight from the cross-section of
economists’ forecasts at each release (XS-T), or do we need a rolling time-series fit to past
median-forecast errors (T'S-T)? In simpler terms: does the cross-section contain enough
information to properly quantify uncertainty, or do we necessarily need information from

errors in the time-series?
For each release ¢ and nominal level L € {50,60,70,80,90,95}%, we test whether the
realized print falls inside a two-sided Student-¢ band:

e XS-T: fit t,(u, 0) to the contemporaneous cross-section of forecasts; use fi as the center

and &, for the half-width.

o TS-Ty: fit t, (i, o) on the last W months of median-forecast errors; center at fm°d + i

with half-width from &,0; W € {12, 24, 36,60, 120}.

Calibration is summarized by empirical coverage at each L and by the mean-absolute gap

(MAG) between empirical and nominal coverages (smaller is better).
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Table 3: Empirical coverage versus nominal targets for Student-¢ bands centerd at fi.

The final column reports the mean-absolute gap (MAG).

Method 50% 60% 70% 80% 90% 95% MAG

Full-TS-¢ 120m  0.425 0.534 0.623 0.733 0.822 0.918 0.066
Full-TS-¢ 12m  0.449 0.547 0.657 0.728 0.862 0.921 0.047
Full-TS-t 24m  0.475 0.566 0.674 0.748 0.893 0.942 0.025
Full-TS-t 36m  0.470 0.565 0.643 0.770 0.887 0.943 0.029
Full-TS-t 60m  0.427 0.539 0.670 0.733 0.888 0.937 0.043
Full-XS-¢ 0.233 0.289 0.368 0.425 0.496 0.586 0.342

Table 3 reports results on the full panel.

e ('ross-section alone under-covers materially. FULL-XS-T delivers 0.586 empirical cov-
erage at the 95% band and 0.233 at the 50% band, yielding a large MAG of 0.342. The
shortfall is broad-based across all levels, indicating that disagreement snapshots do not

by themselves encode a stable predictive density.

e Rolling time-series fits calibrate well, with a clear sweet spot at 24 months. FULL-TS-
Tosm attains the lowest MAG (0.025) and tracks targets closely across the grid (e.g.,
95% — 0.942, 90% — 0.893, 50% — 0.475). Windows that are too short (12m, MAG
= 0.047) are overly reactive, while very long windows (60-120m, MAG = 0.043-0.066)
are sluggish and under-adjust through regime shifts. The 36m window is competitive

(MAG = 0.029) but marginally less aligned than 24m.

Implications

1. Spread is informative but not sufficient. The XS-T experiment shows that using the
cross-section to construct intervals leads to systematic under-coverage. We therefore

do not build bands directly from the cross-section.

2. Adopt a 24-month rolling window as the baseline interval engine. The 24-month win-
dow provides the best accuracy—stability trade-off for NFP. It also provides more dy-
namic adjustment to time-varying volatility relative to longer rolling windows. Thus,

we deploy a 24-month rolling window for prediction band estimation for all methods

10
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across our distributional engines.

3. Use spread only as a modifier. Given its directional signal in extremes, we incorporate
cross-sectional disagreement as a crisis multiplier applied to the well-calibrated T'S-

Tosm bands rather than as a stand-alone density.

4 Methods

In this section, we present an overview of our forecasting models, including ensemble

methods and distributional engines tailored for macroeconomic time series.

4.1 Point and Directional Forecasts

Contiguity filter. All point—forecast engines in this study apply a contiguity filter to
the economist panel before constructing weights or aggregating forecasts. The filter re-
quires that an economist must have submitted non-missing forecasts for each of the W
most recent releases in the chosen look—back window to be eligible for inclusion. This
rule serves two purposes. First, it screens out sporadic forecasters whose intermittent
submissions can inject high—variance noise into the aggregation, especially if they hap-
pen to be correct in a single outlier month and are overweighted by naive inverse—error
schemes. Second, it stabilizes the composition of the forecast pool, ensuring that perfor-
mance statistics used for weighting (e.g., mean squared error, log-likelihood) are based
on comparable forecast histories rather than irregular or incomplete records. In practice,
the contiguity filter reduces weight volatility and anchors aggregation to forecasters with

demonstrated consistency.

11
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Active Economists per Release Date
(Contiguity Windows: 6 vs. 12 vs. 24 months)
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Figure 5: Active Economists per Release Date with Applied Contiguity Filters

The contiguity filter is capped at 12 months to preserve a sufficient number of forecasters

in each cross-sectional sample across the full backtesting horizon.

Stratified Regimes. To gauge robustness of our point and directional forecasts, we
evaluate point and directional accuracy within six macro regimes. Cut dates are anchored
to known breaks and to visible shifts in loss variance and forecast disagreement (see
Fig. 1): the Global Financial Crisis (GFC) and the COVID shock serve as explicit
stress tests, while adjacent expansion phases probe stability in low-volatility backdrops.

The regimes are:

Pre-GFC expansion: 2003-12 to 2007-12

GFC: 2008-01 to 2009-12

Early expansion: 2010-01 to 2014-12

Late expansion: 2015-01 to 2019-12

COVID shock: 2020-01 to 2022-12

Post-COVID normalization: 2023-01 to 2025-07-03

GFC and COVID windows are where squared-error volatility and cross-sectional dis-
agreement spike, making naive weighting schemes brittle; expansions test whether gains

persist when distributions are tight and drifting slowly. These strata are used only for

12
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reporting and diagnostics; all models are refit in a rolling, out-of-sample protocol with
no look-ahead.
4.1.1 Static Inverse Error

Intuitively, the static inverse error forecast adopts the approach of weighing forecasters
that have been accurate in the recent months more heavily while filtering out sporadic
forecast noise with a contiguity filter. We present a more detailed and mathematical

breakdown below.

Let ¢ index data releases and let & (W) C & be the set of economists who supplied

non—missing forecasts in each of the W most recent releases.

Error history. For i € &(W) define the point forecast errors
€Cit—k — fi,t—k — Yit—k, E=1,....,W,

where f; - is the submitted forecast and y; is the realised print.

Weight rules (re-estimated each t)

,

1 Equal weight

Sit = (MAEM —1—)\)_1 Inverse absolute error

(MSEM +>\)_1 Inverse squared error
\

with MAE; ; = W1 ZkW:1|e,~7t_k|, MSE;; = W! ZkW:1 61‘2,7&71{7 and A = 107%. Normalized

weights are w;; = s;¢/ > jeg (W) Sit- The lambda term is supplied for numerical stability.

Smart consensus forecast

~smart __
Yy = E Wiy fige

€& (W)

The procedure is repeated across W € {3,6,12} and all weighting rules, yielding a spec-

ification grid evaluated walk-forward out-of-sample.

13
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4.1.2 Exponentially Weighted Moving Average (EWMA)

EWMA adapts forecaster weights in real time by decaying the influence of older forecast
errors. Relative to the static inverse—error scheme, the procedure introduces a temporal

decay hyperparameter that emphasizes recent performance.

Temporal decay. Fix a rolling window length W € {3,6,12} (months) and a decay
factor p € {0.75,0.80,...,0.95}. Define

pW—k

Ur(p, W) = W’

so that 11 applies to the most-recent error and ), ¢, = 1. As p—1 the weights flatten,

recovering the static window as a limiting case.

Error aggregation. For economist ¢ with a complete W-month history let e;;— =

fit—k — yi—i denote the k-step-old error. EWMA forms an exponentially weighted score

w

Si(,gt) - Z¢k(P7 W)glei—r), g(x) € {|z], 2*},

k=1

corresponding to mean-absolute or mean-squared loss.

Weight rules. With a numerical ridge A = 107° the raw scores are converted to weights

(

1, Equal weight,

Sit = (S(H) + /\)_1 Inverse-MAE Wit = L
s 7t ) ) ’ Zje&(W) Sj7t

(*) -1 ;
(Sit + /\) ., Inverse-MSE,
\ I’

Smart consensus forecast. The EWMA point prediction for release t is then

~EWMA
Yy = E Wiy fit

1€&(W)

where &(W) is the set of economists with non-missing submissions in all W look-back

months.

14
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Hyperparameter tuning. A walk-forward grid search traverses p € {0.75,0.80,...,0.95}
for each window W € {3,6,12} and weighting rule; each (W, p,rule) defines a distinct

specification.

4.1.3 Soft Bayesian Model Averaging (soft-BMA)

soft-BMA builds a heavy-tailed likelihood for each economist’s recent errors and converts
the resulting log-evidence into a soft-maxz weight. While it stops short of full BMA,
using rolling-window plug-in likelihoods rather than posterior model probabilities (hence
soft-BMA), the procedure retains the Bayesian spirit of BMA while allowing weights to

evolve smoothly with incoming data.

1. Construct an error panel: Fix a look-back horizon W months and degrees-of-

freedom parameter v. For each active economist ¢ collect the centerd forecast errors

Cit—k = fi,t—k — Yt—k; k= 17 B W.

2. Fit Student-t error models: Estimate the scale 6;; = /51 > & e;,_, and compute

the cumulative log-likelihood

w
lia(v) = Y logty(eisi; 0,6i4),

k=1

where t,(+;0,0) denotes the Student-t density with v degrees of freedom, zero mean,

and scale o.

exp{&-,t(y)}
Zjegt(W) eXp{gj,t(V)} ’

thereby favouring economists whose recent errors are more probable under their own

3. Convert evidence to weights (soft-max): Define w;; =

Student-¢ fit.

4. Form the crowd forecast: Align the weight vector with current submissions and

predict
QfO&_BMA — Z Wi fi,t7
€& (W)
alongside the directional flag 1{g°*BMA > median,}.

5. Hyperparameter grid: A walk-forward search spans W € {3,6,12} and v €
{3,5,10,25}, generating an out-of-sample record per (W, v) specification.

15
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The soft-BMA procedure was selected as a result of initial data exploration observing the
distributional pattern of median forecast errors (3.2). It generalizes static inverse-error
weighting by translating likelihoods—mnot point errors—into weights, thereby accommo-
dating heteroskedasticity and fat-tailed periods. Unlike MWU, which multiplicatively
aggregates all past errors, soft-BMA restricts memory to a finite window but modulates

the influence of extreme observations through the Student-¢ tail parameter v.

4.1.4 Multiplicative Weights Update (MWU)

MWU is an online learning algorithm that treats each economist as an expert and adap-
tively reallocates probability mass toward forecasters that minimize squared error in real
time. We adapt the classical scheme with a persistent global expert pool, probation and
drop rules, sleep—tracking, and projection onto a capped simplex to reflect operational

realities.

1. Persistent global pool and probation: The algorithm maintains a single global
pool of experts across the full sample. An economist is eligible to enter the pool only
after passing a 12-month contiguity screen (i.e. uninterrupted forecasts for the prior

12 releases). Entry is triggered the month after the probation window completes.

2. Newcomer allocation and incumbents: New entrants receive a fixed newcomer
share apew = 0.10 split equally among them, with incumbent weights scaled down
proportionally to preserve the unit sum. All weights are projected onto the capped

simplex {w; € [Wimins Wmax|, Y; Wi = 1} With wiyax = 0.50 and wyi, = 1073,

3. Forecast construction: For release ¢, let A; denote experts with a live submis-
sion and no more than S,.x = 2 consecutive misses. If |A;] > 10 (minimum active
experts), we re-project the active sub-portfolio to the capped simplex and form the

smart consensus

~MWU
Yy = Z wz‘,tfi,t-

i€ Ay
A directional signal 1{gMVY > median;} is logged for evaluation. Active-month

weights (post-projection) are snapshotted for later diagnostics.

4. Loss evaluation and multiplicative update: Upon realisation of y;, penalised

squared-error losses £;; = (fir — y)> + A with A = 107% are computed for active

16
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experts, and weights updated via

Wipr1 X wigexp(—nliy), n € [0.001, 0.020].

The global pool is then re-projected to the capped simplex to enforce bounds and unit

surn.

5. Sleep and expulsion logic: Absences increment a sleep counter c;;, reset on sub-
mission. Experts are permanently dropped if they exceed Sy,.x = 2 consecutive misses

or accumulate more than M., = 6 misses in any rolling 12-month window.

6. Hyperparameter grid and evaluation: A walk-forward grid over 7 is run sep-
arately on COVID-only and full-history panels. Out-of-sample diagnostics include
RMSE, hit rate, Binomial and Pesaran—Timmermann p—values, and Diebold—Mariano

tests, with regime-wise breakdowns to gauge robustness.

MWU differs from static inverse-error and EWMA schemes by compounding past losses
multiplicatively, yielding a long-memory weight vector that adapts smoothly over time.
Relative to soft-BMA, MWU operates in expert space rather than error-likelihood space,
providing a complementary blend of adaptivity and interpretability, while the projection,
cap, and drop mechanisms prevent domination by any single forecaster while still allowing
the model the appropriately bias predictions toward recent winners among the expert

pool.

4.1.5 Robust Ensemble for Directional Forecasting

Motivation. Ensemble methods are a standard remedy for model fragility. Take for
example the case study of decision tree learning algorithms in machine learning. A
single decision tree can be highly sensitive to minor perturbations in the training data;
aggregating many trees (bagging, random forests) reduces correlation across errors and
yields a predictor that is both lower variance and more stable to small changes. We adopt
the same logic for macro forecast combination: instead of committing to one “best”
specification, we average a small, diverse set of top performers so that idiosyncratic

misspecification risk washes out while common signal is amplified.

17
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Candidate pool (robust winner / HR / RMSE). For each base model we form a
compact pool of specifications using out-of-sample (OOS) diagnostics on the full panel:
(i) the RMSE winner (lowest OOS RMSE vs. the crowd median), (ii) the Hit-Rate win-
ner (highest directional hit rate relative to the median), and (iii) a robust winner defined
as the lowest-RMSE spec among those that simultaneously pass directional robustness
screens (Diebold-Mariano p < 0.10 and Pesaran-Timmermann p < 0.10). Pool mem-
bers must have live OOS histories. From this pool we build small directional forecast

ensembles.

Ensemble construction. At release t, let gjt(j) denote the OOS smart forecast from

pool member j € J, with consensus median f°4. For a given ensemble S C J of

size k (we consider k € {3,5}), the ensemble directional forecast is produced by a strict

majority vote relative to the median:
d = 1{2 g > ) > } ,
jES

so the ensemble calls a beat when strictly more than half of the members sit above the

median; it calls a miss otherwise.

Four horizon-anchored signals. To balance stability and adaptivity, we compute
four horizon-anchored ensemble signals by re-evaluating candidate combinations on pro-

gressively shorter realized windows that end at the last observed print:
W € {Full history, last 12 months, last 6 months, last 3 months}.

For each window W, we:
1. restrict each member’s OOS series to W;
2. enumerate all k-member combinations from the pool;

3. select the combination 3, that maximizes directional hit rate over W (primary crite-
rion);
4. report the ensemble’s RMSE vs. the median, the exact binomial p—value for hit rate

(null = 50%), the Pesaran—-Timmermann p—value to adjust for base-rate effects, and

18
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an AC score

AC = (1—@) + )\Ublocks(ﬁlz\{)a

where opoas 1S the standard deviation of block-level hit rates across regimes. Lower

AC indicates better accuracy and stability.

This yields four parallel signals—Ensgy, Ension, Ensgy,, Enss,—each optimized for its

lookback.

Comparing signal horizons. The Full-history signal is the most stable and is pre-
ferred when the process is stationary and structural breaks are unlikely. The 12-month
signal offers a balanced bias—variance trade-off and typically tracks evolving seasonals
and slow-moving shifts without overreacting. The 6-month signal is more reactive and
can surface regime changes sooner at the cost of higher variance. The 3-month signal is
the most adaptive but also the noisiest; it is informative as an early-warning overlay, not
as a sole driver. In practice, we publish all four; downstream users can privilege stability
or dynamic reactivity as the trading context requires. We recommend defaulting to the

6-month signal for most purposes as it delivers the highest historical hit rate.

4.2 Distributional Engines

Accurate point estimates alone are often insufficient for trading and risk management; a
full predictive density can often be useful to gauge tail risk, size positions, and price op-
tionality around macro prints. Accordingly, we deploy four complementary distributional
engines: (i) a Student-t error model, (ii) a Gaussian Mixture Model (GMM) to cap-
ture latent regimes, (iii) a t-GARCH(1,1) filter for time-varying conditional volatility,
and (iv) Bayesian Model Averaging (BMA) over Normal and Student-t specifica-
tions. Each engine ingests the historical error stream of the crowd median and outputs
calibrated two-sided prediction bands for the upcoming release. We evaluate candidates
on coverage accuracy—the mean absolute gap between empirical and nominal hit rates
(i.e. for a 95% prediction band, how close historical empirical coverage is to the the-
oretical 95% nominal value)—and consistency, the variation of that gap across distinct

market regimes.
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Crisis Multiplier (shared across engines). Let s; be the cross-sectional forecast
spread and § the median of its trailing 24-month history. We define
5\ B 0, sy < Pctos{si—r}its,
my = (g) ) ﬁt =

0.80, s; > Pctos{s; & }7t,.

All interval engines below apply m; multiplicatively to their baseline half-widths (see §3.3

for motivation).

Regime construction for distributional evaluation. Unlike the point—forecast anal-
ysis, which stratifies performance into shorter macro-regimes to examine directional and
level accuracy, the distributional evaluation uses a coarser set of four long—horizon strata.
This is intentional: coverage analysis requires many realized observations to obtain sta-
ble estimates of empirical inclusion rates at each nominal level. For point/directional
evaluation we estimate a low-dimensional target (mean and sign), which stabilizes with
relatively few observations, whereas coverage assessment interrogates the full predictive
CDF—especially tail quantiles—whose binomial standard errors require materially larger
T. Partitioning too finely would produce high—variance coverage estimates and potentially
misleading inferences. The four strata are defined to be approximately equal in length
to preserve enough data within each block to assess calibration while still allowing us to

observe structural shifts.

4.2.1 Student-t Predictive Density

We model forecast errors e; = f°d — ¢, with a Student-¢(v, i, o) distribution, estimated

each month on the most recent 24 monthly errors. Let 7, i, denote the maximum-
likelihood parameters for that window. In the implementation, [ is ignored so that every
interval is centered directly on the median point forecast. For a nominal coverage level

L € {50,60,70,80,90,95}%, the half-width is

— A St -1 _ L
hL,t - tl—a/Q,V o X <medians> ) a=1 100
—_————

crisis multiplier
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where s; is the cross-sectional forecast spread at t. The exponent [ is set to a base value
(8 = 0) unless the current spread is above the 95" percentile of its own 24-month history,

in which case we apply the crisis multiplier m; (5 = 0.80) from 4.2.

Two specifications are considered: (i) no crisis adjustment, and (7i) with crisis adjust-
ment. A walk-forward evaluation on the full-sample panel selects the variant that mini-

mizes the mean-absolute coverage gap, which is then applied to the live-month forecast.

4.2.2 Gaussian Mixture Model (GMM) Predictive Density

We model forecast errors e; = f*°d — y, using a Gaussian mixture model (GMM) esti-

mated each month on the most recent 24 monthly errors. For k£ € {1,2,3,4} mixture
components, we fit a full-covariance GMM by maximum likelihood and select the number
of components that minimizes the Bayesian Information Criterion (BIC). This allows the
error distribution to flexibly capture skewness, kurtosis, and potential multi-modality in

the historical error process.

Given the fitted GMM, we simulate N = 100,000 draws {é™}_, from the mixture. For
a nominal coverage level L € {50, 60, 70, 80,90, 95}%, the lower and upper error quantiles

are taken from the empirical simulation distribution:

1-L

; 1—-L
qlLO, q%l = Quantile (é("), T) , Quantile (é("), 1-— T) )

The corresponding prediction interval is then

med hi med lo
|:t — MMy dqr, J; _mt'qL}a

where my is the crisis multiplier defined in 4.2.

Two specifications are considered: (i) no crisis adjustment (5 = 0 always) and (ii) with
crisis adjustment as above. A walk-forward evaluation on the full-sample panel selects the
variant that minimises the mean-absolute coverage gap, which is then applied to generate

the live-month forecast intervals.
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4.2.3 t-GARCH Predictive Density

We model forecast errors e; = f°d — g, with a constant-mean GARCH(1,1) process and
Student-¢ innovations, re-estimated each month on the most recent 24 monthly errors. Let
v denote the degrees-of-freedom of the Student-¢ innovations and & the one-step-ahead
conditional volatility from the filter. Forecast errors are rescaled by a constant factor
K (e.g., kK = 100 to map tens of thousands to hundreds of jobs) to improve numerical

stability; outputs are transformed back to original units.

For a nominal coverage level L € {50, 60,70, 80,90,95}%, the half-width is

_ o St —1_ L
hL,t - 751704/2,11 o X <medians> ) a=1 100
~—_———

crisis multiplier

where s; is the cross-sectional forecast spread at t. The exponent (3 is set to a base value
(8 = 0) unless the current spread is above the 95" percentile of its own 24-month history,

in which case we apply the crisis multiplier from §4.2.

Centering. Prediction intervals are centered at the consensus median f4 (no p-shift).

This keeps the interval engine focused on dispersion rather than level, and avoids double-

counting any bias relative to the median.

We evaluate two specifications: (i) no crisis adjustment and (ii) with crisis adjustment.

4.2.4 Bayesian Model Averaging (BMA) Predictive Density

We model forecast errors e; = fm°d — g, each month using Bayesian model averaging

(BMA) over two candidate error distributions, estimated on the most recent 24 monthly
errors. The candidates are: (i) a Normal distribution N(u,0?), fitted by closed-form
maximum likelihood, and (#7) a Student-¢ distribution t,(u, o), fitted by numerical max-
imum likelihood with v > 2 constrained. The Student-¢ candidate allows for fat-tailed

errors in periods of elevated volatility.

Let BIC,, denote the Bayesian Information Criterion for model k£, and BIC,,;;, = min,, BICy.
We define Occam weights

- exXp [—% (BICk - BICmin)]
>, exp [—1 (BIC, — BICyu)]’

Wi
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so that better-fitting models receive larger posterior weights.

We then simulate N = 100,000 synthetic errors by: 1. randomly selecting a model
according to {wy}, and 2. drawing an error from the selected distribution with its fitted

parameters.

For each nominal coverage level L € {50, 60, 70,80, 90,95}%, the lower and upper quan-
tiles of the simulated error distribution define the empirical error bounds (¢!, ¢i). Pre-
med

diction intervals are formed by centring these bounds on the median forecast f;*°“ and

optionally applying a crisis multiplier previously defined in 4.2.

Two specifications are considered: (7) no crisis adjustment (5 = 0 always) and (ii) with
crisis adjustment as above. A walk-forward evaluation on the full-sample panel selects
the variant that minimizes the mean-absolute coverage gap, which is then applied to

generate the live-month forecast intervals.

4.3 Evaluation Protocol

Formal test statements are collected in Appendix A.1; for completeness, we summarize

the operational definitions here so results can be read at a glance.

Back-test protocol: At each release t, models are refit using information available
through ¢t —1 and then produce: a point forecast g;, a directional call relative to the
consensus median ¢4, and predictive intervals at levels L € {50, 60,70, 80,90, 95}%.
Relative tests take the consensus median as the benchmark. The result of this rolling

evaluation protocol are out-of-sample results with no lookahead bias.

(1) Point and directional evaluation

e Point loss and RMSE: Define squared loss ¢; = (§;—y;)*. Report RMSE = 4/ % >l

for the smart model and for the median benchmark.

e Relative accuracy (DM): Compare each model to the median using the Diebold-Mariano
test on d; = ¢model — ymedian ' with Newey—West long-run variance. We report the DM

statistic and two-sided p—value; negative El[d,] favors the model.

e Directional skill: We forecast the direction of the surprise relative to the consensus
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median. Let the directional target be d2* = sign(y; — f™°¢) and the model’s directional

forecast be di"°d = sign(g; — f°4). A hit occurs when d°d = d2* # 0 (ties at the
median are not scored and virtually never happen). We report the hit rate OR =
7713, 1{d? = d** # 0}, an exact binomial p-value under a 50% null, and the

Pesaran-Timmermann statistic (with p-value) to account for base-rate effects.

e Accuracy x consistency score across regimes: To assess forecast performance

across regimes, we summarize accuracy and regime stability with
Acpoint - (1 - HR) + A Oblock

where opjock is the standard deviation of block-level (e.g., pre-COVID / COVID / post—
COVID) hit rates and A controls the accuracy-stability trade-off (default A = 1.0,
equally weight accuracy and consistency). Lower is better. We also display RMSE and
DM alongside AC to keep level performance visible.

(2) Distributional (interval) evaluation

e Coverage by level. For a nominal level L, let the ex-ante interval be I = [(1 1, ur .
Empirical coverage is the proportion of test releases whose realization lands inside the

band:
N 1 E
Cp = T ; 1{lr: <y <wup:},

with interval endpoints treated as inclusive and any missing ¥y, excluded from 7.

e Calibration summary: Report the vector {6,;} and the mean absolute coverage gap

MAG = iZ\@ ~ L,
£l =

where £ = {50, 60, 70,80, 90,95}%. Smaller MAG indicates better average alignment

to targets.

e Selection score (densities). We balance calibration and regime stability with

ACqisy = MAG + A 0plocks
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where oo 1S the standard deviation of block-level coverage gaps across L. Lower is
better. Where applicable, we report results with and without the spread-based crisis
multiplier to verify that gating improves coverage in high-disagreement months without

degrading tranquil periods.

How to read our backtest tables (quick guide): DM< 0 with small p favours the
model over the median; higher HR with small binomial /PT pindicates genuine directional
skill; coverage rows close to nominal and low MAG indicate well-calibrated intervals; in
all cases, a lower AC score marks the accuracy = consistency champion once stability is

priced in.

5 Results

5.1 Point—Forecast Performance

We present primary findings from our point/directional forecast models in this section.

Full backtest results for individual methods are available at §A.2.

5.1.1 Inverse—Error

Inverse—error schemes reweight economists according to recent performance within a strict
contiguity screen. At each release t and window W € {3,6,12}, weights are propor-
tional to inverse loss (MAE or MSE) over the last W realized months; we also test an
equal-weight baseline on the same contiguous panel. This construction is the simplest
form of adaptive ensembling: it is transparent, fast to update, and provides a clean stress

test of whether the crowd can be improved with light—touch learning.

COVIDfiltered vs. full history. On the COVID-filtered panel, inverse-MSE with
a 12-month window attains the lowest RMSE and passes the Diebold-Mariano test at
conventional levels, while 6-month equal-weight delivers the highest hit rate with strong
binomial and PT support. When the full history is reinstated, equal-weight with a 6-
month window jointly attains the lowest RMSE and the highest hit rate; however, DM
evidence weakens as the COVID spikes inflate loss variance, eroding level advantages

even when directional calls remain above 55%.
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Production choice and rationale. For reporting on the full sample we emphasize
the equal-weight, 6-month specification. It balances adaptivity and stability: (i) short
enough to track slow drifts in forecaster quality; (ii) long enough to avoid the noise we
observe in 3-month variants; and (iii) robust across pre-GFC, GFC, late-cycle, COVID,
and post—-COVID subperiods. We retain the 12-month inverse-MSE model as a COVID-
filtered benchmark where RMSE gains are clearest.

Regime diagnostics (selected spec: Full panel, equal weight, W = 6) Table 4
summarizes performance by macro regime. Several features are notable. First, directional
accuracy is consistently above 55% in tranquil regimes and rises to nearly 80% in the
GFC, indicating that the ensemble tends to be on the right side of large moves. Second,
RMSE differences are small in pre-COVID expansions but remain in favor of the smart
consensus during COVID despite both series exploding in scale. Third, short trailing
windows illustrate the classic bias—variance trade-off: very recent slices can look excellent

(or poor) by chance; we therefore prefer the full-regime profile when judging robustness.

Table 4: Stratified diagnostics for the selected inverse—error specification on the full panel
(equal weight, W = 6). Metrics by regime: RMSE of smart and median forecasts,

directional hit rate (vs. the median), and Diebold-Mariano p—value (smart vs. median).

Regime RMSE smart RMSE median HitRate DM p
2003-12 to 2007-12 (pre-GFC) 80.074 80.345 0.551  0.670
2008-01 to 2009-12 (GFC) 73.908 76.637 0.792  0.100
2010-01 to 2014-12 (early expansion) 60.267 61.597 0.583  0.059
2015-01 to 2019-12 (late expansion) 62.551 62.883 0.550  0.395
2020-01 to 2022-12 (COVID) 1655.331 1722.868 0.611  0.284
2023-01 to 2025-07-03 (post—COVID) 91.877 93.334 0.516  0.336
Takeaways

o Keep it simple under regime uncertainty. Equal weighting across contiguous forecasters

is hard to beat in the full history, where large shocks destabilize inverse—error weights.

e Directional alpha is durable. Even when RMSE improvements blur in crisis tails, the

ensemble’s sign relative to the median remains informative and statistically supported.
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o Window length is a tuning knob, not a free lunch. Very short windows add vari-
ance; very long windows dull responsiveness. A 6-12 month horizon provides the best

bias—variance trade-off here.

5.1.2 EWMA

EWMA adds controlled recency to the inverse—error idea: within a W-month window,
older errors are exponentially down-weighted by a decay factor p, and the resulting scores
feed the same inverse-MAE/MSE (or equal-weight) rules. As p — 1, the scheme ap-

proaches the static window.

COVID-filtered panel. The sharpest level gains appear with a longer window and
slower decay: the lowest RMSE is delivered by ewma_w12_d0.95 minverse mse (69.81 vs.
70.91 for the median). Directional skill is strongest for ewma w6_d0.75 mequal weight,
with a hit rate around 0.58 and statistically significant binomial and PT p-values. Taken
together, these results suggest that (i) modest recency helps, but (ii) aggressive reweight-
ing by recent squared error is not strictly necessary to achieve stable directional improve-

ments—simple equal-weighting within a 6-month window is competitive and robust.

Full panel (including COVID). Heavy-tail months erode the level advantage of
error-weighted variants. The best overall specification by both RMSE and hit rate is
ewma_w6_d0 .75 mequal weight (619.6 vs. 644.7 for the median; HR ~ 0.585). Despite
the sizeable RMSE reduction, Diebold-Mariano p-values are generally not significant
on the full sample because crisis months inflate variance. The robust winner for this
panel (ewma w3_d0.75 mequal weight) reinforces the theme that light recency and small

windows can be preferable when the error process is punctuated by rare, extreme shocks.

What the regime breakdown shows. Table 5 reports regime diagnostics for the
full-panel winner by accuracy (ewma_w6_d0.75 mequal weight). Relative to the crowd
median, EWMA is neutral in tranquil periods (pre-GFC, late expansion), improves in
stress (GFC, COVID) and early-recovery phases, and is roughly even post—-COVID.
This pattern is consistent with EWMA’s design: it adapts enough to benefit when dis-
tributions broaden, yet remains simple enough (equal-weight, short window) to avoid

chasing transitory idiosyncrasies.
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Key takeaways.

Directional skill persists across panels. Hit rates cluster in the mid-50s and rise

in stress regimes; PT tests confirm dependence beyond chance on the COVID panel.

Level gains are regime-dependent. On the COVID-filtered panel, w = 12, p = 0.95
inverse-MSE offers the best RMSE; on the full panel, simple equal-weighting with

w = 6 dominates.

Decay is a second-order choice. Within a given window, changing p from 0.75 to
0.95 nudges performance rather than overturning it. Window length (3-12 months)

and whether we use error-weights vs. equal-weights matter more.

Operational guidance. For live use, we favor w = 6 equal-weight for directional

signaling (stable, low-variance), and w = 12, p = 0.95 inverse-MSE as an optional

level overlay in non-crisis regimes (COVID-filtered evidence).

Table 5: Regime diagnostics for EWMA (full panel winner by accuracy:

ewma_w6_d0.75 mequal weight).

Regime RMSE _smart RMSE_median HitRate DM _p
2003-12 to 2007-12 (pre-GFC) 80.074 80.345 0.551 0.670
2008-01 to 2009-12 (GFC) 73.908 76.637 0.792 0.100
2010-01 to 2014-12 (early expansion) 60.267 61.597 0.583  0.059
2015-01 to 2019-12 (late expansion) 62.551 62.883 0.550 0.395
2020-01 to 2022-12 (COVID) 1655.331 1722.868 0.611 0.284
2023-01 to 2025-07-03 (post—COVID) 91.877 93.334 0.516 0.336

5.1.3 soft-BMA

soft-BMA converts fit into weights by scoring each economist’s last W errors under a

Student-¢, model and mapping log-likelihoods through a soft-max. Heavier tails (v small)

damp outliers, and the weighted average of live submissions yields the point forecast.

Key patterns

e COVID-filtered panel. Twelve-month windows coupled with heavy tails dominate.

The lowest RMSE arises at W=12, v=3 (smart 67.7 vs median 70.9), and the highest
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hit rates cluster at W=12, v € {10,25} (HR =~ 0.58) with small binomial and PT

p-values (p=.018-.036), and DM p=.060-.067. Three- and six-month windows are

competitive on direction but less compelling on level.

e Full panel (with COVID). Level RMSE deteriorates materially for all specs (reflect-

ing the extreme COVID miss), producing no “robust winner” under our 10% DM /PT

gate. Directional accuracy remains resilient: HRs in the 0.56-0.58 range frequently

attain exact-binomial p < 0.05 even when RMSE is worse than the median. In short,

soft-BMA carries a stable directional edge, but its level advantage is eroded by crisis-

scale errors that heavy tails alone do not neutralize.

e Role of heavy tails and window length. Moving from v=25 toward v=3 system-

atically helps in COVID-filtered tests (more protection against occasional large errors).

Window length matters more than v: W=12 emerges as the most reliable horizon for

both RMSE and HR.

Selected specification and regime breakdown. For interpretability across regimes
we display the W=12, v=3 model (it is the COVID-panel RMSE leader and the full-panel
HR leader). The table shows that soft-BMA is comparable or better than the median in

tranquil expansions, suffers a level penalty during COVID, and recovers strongly post—

COVID with borderline-significant DM in levels.

Table 6: Regime breakdown for soft_bma w12 nu3 (full panel).

Regime RMSE _smart RMSE_median HitRate DM _p
2004-06 to 2007-12 (pre-GFC) 71.137 71.584 0.581 0.759
2008-01 to 2009-12 (GFC) 77.873 76.637 0.542  0.665
2010-01 to 2014-12 (early-expansion) 60.551 61.597 0.567  0.328
2015-01 to 2019-12 (late-expansion) 62.452 62.883 0.567  0.777
2020-01 to 2022-12 (COVID) 2219.418 1722.868 0.556  0.283
2023-01 to 2025-07-03 (post-COVID) 76.355 93.334 0.645  0.066

Takeaways

e Directionally valuable. soft-BMA retains a consistent directional edge, particularly

with W=12 and small v, even when level RMSE parity versus the median cannot be
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guaranteed in crisis periods.

o Level sensitivity to crises. Heavy tails cushion but do not neutralize COVID-scale

errors; this explains the absence of a full-panel robust winner (DM/PT p > 0.10).

e Practical placement. We treat soft-BMA as a strong directional component in the ro-
bust ensemble and rely on distributional engines (with crisis multipliers) for calibrated

uncertainty in levels.

5.1.4 Multiplicative Weights Update

MWU treats each economist as an “expert” and updates weights multiplicatively with
recent loss: w; 41 o w;¢exp(—n¥;;), where ¢, is squared-error and 7 is a learning rate.
Each month we form the smart forecast as the weighted average of live submissions, with

weights projected onto a capped simplex to avoid dominance.

COVID-filtered panel. Across step sizes n € [0.001,0.019], MWU consistently re-
duces level error relative to the crowd median (all entries have RMSEg e < RMSE edian)-
The best RMSE occurs around 1 = 0.005, while the highest directional hit rate is at
n = 0.015. However, directional skill remains modest (HR ~ 0.48-0.54) and neither

the exact binomial nor PT tests deliver strong significance; no configuration passes our

robustness gate (both DM and PT < 0.10).

Full panel (with COVID months). When the crisis months are included, MWU’s
level performance deteriorates: for all 7, RMSEgpart > RMSE cqian- Directional accuracy
hovers near coin-flip (HR = 0.47-0.54). DM p—values frequently indicate worse squared-
error than the median at moderate/large n (e.g., n = 0.007-0.011), consistent with the
algorithm overweighting experts that themselves became unstable during the COVID

shock. Smaller ) attenuates this variance but does not overturn the median.

Regime diagnostics. Table 7 reports performance for the configuration with the high-
est full-sample hit rate (n = 0.015). MWU improves upon the median pre-GFC (lower
RMSE; HR = 0.63) but underperforms in the long expansions and especially in the
post—COVID period, where the DM test flags statistically worse loss relative to the me-

dian. The pattern suggests that MWU’s compounding memory, even with our caps and
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sleep /expulsion rules, does not reweight quickly enough after large distributional breaks.

Table 7: Stratified performance for MWU (mwu_eta0.015) on the full panel.

Regime RMSE smart RMSE median HitRate DM p
2004-2007 (pre-GFC) 68.747 71.584 0.628 0.422
2008-2009 (GFC) 84.079 76.637 0.542  0.493
2010-2014 (early expansion) 65.827 61.597 0.533  0.229
2015-2019 (late expansion) 67.394 62.883 0.533  0.263
2023-2025 (post—-COVID) 100.989 93.334 0.419 0.004

Takeaways. (i) MWU exhibits directional persistence in tranquil periods but its level
errors are fragile to crisis-era volatility, with post-COVID degradation that is statistically
detectable. (ii) Tuning 7 trades off variance and adaptivity but does not produce a robust
full-sample winner under our DM/PT gate. (iii) Operationally, we therefore retain MWU
as a diversifying voter within the robust ensemble—useful for directional tie-breaks and as
a hedge against misspecified inverse-error/EWMA weights—rather than as a standalone

champion. Full backtests and winners tables appear in the Appendix.

5.1.5 Cross Point—Forecast Signal Comparison

Across the four families—Inverse—Error, EWMA, soft-BMA, and MWU—two regulari-
ties anchor the evidence. First, directional skill persists: hit rates reliably sit in the
mid-50s and strengthen in stress regimes (e.g., GFC), indicating that all families tend to
get the sign right relative to the consensus median and have demonstrated edge. Sec-
ond, level RMSE gains are regime-dependent: once COVID months are included,
Diebold-Mariano evidence weakens and level advantages become fragile because variance

explodes.

Family-wise patterns

e Inverse—Error. Simple specs dominate in unstable regimes. Equal-weight with a
6-month window delivers the most consistent full-sample profile (stable hit rates, no

overreaction to regime breaks). Error-weighted variants (inverse-MSE/MAE) look best
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on the COVID-filtered panel—especially at 12 months—where tails are muted and past

accuracy is more informative.

e EWMA. Light recency helps without being essential. On the full sample, equal-weight
with a short window (6 months) again leads on both RMSE and hit rate; within the
COVID-filtered panel, a longer window (12 months) with slow decay and inverse-MSE
attains the cleanest level gains. Changing the decay factor moves the needle modestly

relative to window length and the choice between equal vs. error weights.

e soft-BMA. Heavy-tailed likelihoods convert recent fit into soft weights, yielding a
durable directional edge (often statistically supported) with a 12-month window and
small v. However, crisis-scale errors erode level RMSE on the full sample; heavy tails

cushion but do not neutralize COVID outliers.

e MWU. The long-memory multiplicative update adapts quickly in principle, but in our
macro panel it is most sensitive to distributional breaks. It can post good pre-GFC di-
rection but loses level footing in long expansions and post-COVID, where compounding

.

can overweight stale “winners.”

Regime view. In the GFC, equal-weight variants of Inverse-Error/EWMA show the
largest directional lift (HR approaching 0.8 for some slices), consistent with diversified vot-
ing when individual experts wobble. In tranquil expansions, all families hover near modest
positive direction with small RMSE differences versus the median. During COVID, every
method’s level error inflates; equal-weight short-window designs are least fragile, soft-
BMA retains sign information, and MWU degrades the most. Post—-COVID, soft-BMA
and the simple averages recover directionally, while level metrics converge toward the

median with only small separations.

Implications for production There is no single always-best champion. Instead, a
cluster of simple, short-horizon averages (6-month equal-weight across Inverse—Error/EWMA)
delivers the best accuracy—stability trade-off on the full history; soft-BMA contributes a
complementary directional signal; MWU acts as a diversifying voter rather than a stan-
dalone leader. These findings motivate the robust ensemble in the next section: rather
than commit to any single learner, we aggregate a small set of top, regime-complementary

specifications and score them by Accuracy x Consistency, producing a single, resilient sig-
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nal that inherits the strengths and hedges the weaknesses of its constituents.

Economist Weights as an Analysis Tool. Beyond aggregate performance metrics,
an additional diagnostic tool is to inspect the individual economists that each model
is most heavily weighting at the latest forecast snapshot. For each model family, we
aggregate weights across all live specifications and panels, normalize them to sum to
one, and rank economists by their resulting model-specific weights. We then form an
equal-model blend (25% weight per family) to identify the overall top contributors to the
current month’s point-forecast signal. This ranking is informative in two complementary
scenarios: first, when the ensemble is performing well, a “hot” economist appearing near
the top across multiple families can offer qualitative insight into the directional bias or
level call driving the model; second, when model performance deteriorates, the list can
be checked for overweighted economists with a history of underperformance, prompting
targeted review or temporary down-weighting. The full ranked tables for the August 2025
NFP print are reported in Appendix A.3, providing transparency into the composition

of the live forecast signal.

5.2 Robust Ensemble Performance
5.2.1 In—Sample Search Results

Our in—sample search combines candidate specifications drawn from the point—forecast
families in §4.1 by selecting, for each model and panel, the lowest—-RMSE specification,
the highest—hit-rate specification, and any “robust” winner (both Diebold-Mariano and
Pesaran—Timmermann p < 0.10). This naturally produces a small, high—quality pool. We
then exhaustively evaluate all k € {3, 5}-member combinations under different evaluation
windows: the full history, trailing 12, 6, and 3 months. Combinations are scored by hit
rate (direction vs. median), with the Accuracy x Consistency (AC) score serving as a

tie—breaker.

Table 8 reports stratified diagnostics for the best £ in each window, excluding trailing
windows from the breakdown. The FULL-window winner (k=5) achieves a 58.7% hit
rate over 218 months with strong exact-binomial and PT significance (p < 0.02), and

an AC-score of 0.48, reflecting both accuracy and stability. Performance is strongest
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in the GFC (hit rate ~ 0.71) and early expansions, with robust gains over the median
in COVID and post—-COVID periods. The T12M and T6M winners produce exactly
50% hit rates in their respective short windows, unsurprising given the small sample sizes,
and their stratified profiles indicate mixed performance across regimes. The T3M winner
reaches 66.7% in its narrow evaluation band, but with only three observations, offering

little statistical reliability.
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Table 8: Stratified performance for in—sample robust ensembles (best k& per window).

Trailing windows omitted.

Window Spec ID Regime HitRate Binom p PT_p AC \=1.0
FULL F1 pre-GFC 0.558 0.542  0.432 0.477
GFC 0.708 0.064  0.054
early-expansion 0.600 0.155 0.121
late-expansion 0.550 0.519  0.405
COVID 0.581 0.473  0.283
post-COVID 0.542 0.839  0.562
T12M T12-1 pre-GFC 0.558 0.542  0.432 0.540
GFC 0.583 0.541  0.728
early-expansion 0.550 0.519  0.466
late-expansion 0.583 0.245 0.165
COVID 0.528 0.868  0.877
post-COVID 0.645 0.150  0.796
T6M T6-1 pre-GFC 0.512 1.000  0.807 0.594
GFC 0.750 0.023  0.015
early-expansion 0.600 0.155 0.121
late-expansion 0.567 0.366  0.273
COVID 0.611 0.243  0.196
post-COVID 0.484 1.000  0.959
T3M T3-1 pre-GFC 0.512 1.000  0.807 0.427
GFC 0.750 0.023  0.015
early-expansion 0.600 0.155 0.121
late-expansion 0.567 0.366  0.273
COVID 0.611 0.243  0.196
post-COVID 0.484 1.000  0.959

Spec Legend: F1 = (ewma_w6_d0.75 mequal weight, inv_err w12 minverse mse,
inv_err w6 mequal weight, mwu_eta0.001, soft _bma w12 nul0)

T12-1 = (ewma_w12.d0.95 minverse mse, soft_bma w12 nul0, soft_bma w12 nu3)
T6-1 = (ewma_w12_d0.95 minverse mse, ewma w3_d0.75 mequal weight,
ewma_w6_d0.75 mequal weight)

T3-1 = (ewma_w12_d0.95 minverse mse, ewma_w3_d0.75 mequal weight,

ewma_w6_d0.75_mequal weight)
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Overall, the in—sample results confirm that blending diverse model families delivers a
persistent directional edge, especially in stress regimes (GFC, COVID) and early recover-
ies. However, shorter evaluation windows (T3M, T6M) are inherently more volatile, with
wide swings in hit rates that reflect small-n sensitivity rather than genuine robustness.
The FULL-history £ = 5 blend remains the most compelling candidate for live deploy-
ment from an in—sample perspective unless one has a strong reason to favor the dynamic

nature of shorter-horizon signals.

5.2.2 Dynamic Evaluation

The in—sample procedure above benefits from a look-ahead bias: ensemble specifications
are chosen using the full history, then evaluated on that same history. To assess true
live—feasibility, we re-run the selection process in a rolling, time—anchored fashion. At
each month ¢, only data available up to ¢t — 1 are used to (i) identify the candidate pool,
(ii) select the best k—spec ensemble for each evaluation horizon (T3, T6, T12), and (iii)
generate a directional signal for ¢. This produces an honest out—of-sample sequence of

predictions.

We compare these dynamic ensembles to a baseline computed as the average of individual
economist hit rates within each regime, where each economist’s hit rate is calculated
relative to the consensus median direction. This baseline captures the intrinsic “signal

strength” of the economist panel without any ensembling.

Table 9 reports stratified diagnostics for each dynamic ensemble and the baseline, exclud-
ing trailing windows. All three dynamic horizons substantially outperform the baseline’s
overall hit rate (49.3%) in both accuracy and AC-score, with T6 achieving the highest
overall hit rate (57.6%) and best AC (0.477). Performance is particularly strong in the
GFC and post—COVID recovery, with T12 also excelling early expansion. T3, while com-
petitive on average, shows greater variability, confirming that very short windows tend to
overfit transient patterns. This, however, can prove to be valuable in times of unusually

high volatility.
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Table 9: Stratified diagnostics for dynamic robust ensembles and baseline.

Regime T3 HitRate T6 HitRate T12 HitRate Baseline HitRate
20042007 (pre-GFC) 0.500 0.475 0.525 0.516
2008-2009 (GFC) 0.667 0.625 0.583 0.526
2010-2014 (early-expansion) 0.567 0.600 0.600 0.497
2015-2019 (late-expansion) 0.583 0.583 0.567 0.469
2020-2022 (COVID) 0.639 0.600 0.560 0.499
2023-2025 (post—COVID) 0.516 0.581 0.452 0.475

Figure 6 plots the rolling hit rates for each horizon’s winning ensemble over the evaluation
period. T3 is visibly the noisiest series, with sharp month-to-month swings reflecting
its susceptibility to small-sample variance. T6 is more stable, with smoother transitions
and fewer abrupt reversals, while T12 offers the most consistent profile over long regimes
but reacts more slowly to regime shifts. These patterns align with the AC—scores: T6’s
combination of high mean accuracy and low volatility makes it the most balanced per-
former, while T3 is better suited for opportunistic, high—-beta directional calls, and T12

for slow—moving macro backdrops.

Rolling hit-rate of winning MV ensemble

Hit-rate

X T T T T T T
2004 2008 2012 2016 2020 2024
Release date

Figure 6: Rolling hit rate of the winning dynamic majority—vote ensemble for each hori-

zon. The dashed line denotes the 50% no-—skill level.

In sum, the dynamic evaluation confirms that the robust—ensemble framework materially
improves on the baseline consensus direction, with the T6 ensemble offering the most

attractive balance of accuracy and consistency for live deployment.
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5.3 Distributional Performance

Methods and interval-construction differences. We evaluate four interval-forecasting

engines:

e Student—t: Fits a rolling 24-month Student—¢ error distribution to the residuals of

the point forecast. Crisis—adjusted variants scale intervals in high—volatility regimes.

e GARCH(1,1)—t: Models conditional volatility dynamics directly from residuals via
a GARCH(1,1) process with ¢t—distributed innovations, optionally applying crisis mul-

tipliers.

e Gaussian Mixture (GMM): Fits a two—component Gaussian mixture to the rolling
24-month residual set, with or without crisis scaling. Captures multi-modal error

structures.

e Bayesian Model Averaging (BMA): Averages predictive distributions from can-
didate engines weighted by recent likelihood, allowing for heavy—tailed members. The

best—performing BMA variant here is without crisis adjustment.

These approaches differ in how they capture distributional shape (single-parametric tail
vs. mixture), dynamics (static rolling fit vs. conditional volatility), and crisis—period

scaling.

Summary of back—test results. Table 10 consolidates the best—performing variant
of each family on the Full panel by mean absolute coverage gap (AvgAbsGap) and Ac-

curacy—Consistency score (AC—Score, lower is better).

Table 10: Best—performing distributional models on the Full panel.

Method Best Tag AvgAbsGap AC—Score
Gaussian—Mixture Roll24_CrisisAdj 0.0114 0.0173
Student—¢ Roll24_CrisisAdj 0.0116 0.0221
BMA Roll24 _NoAdj 0.0101 0.0371
GARCH(1,1)-t GARCH _CrisisAd;] 0.0189 0.082

Detailed observations by method.
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Gaussian—Mixture. Crisis-adjusted GMM achieves the lowest AC-Score (0.0173) and
the second-lowest AvgAbsGap (0.0114). Coverage is stable across strata, with only
mild over—coverage in the most volatile blocks. The mixture form appears to capture

asymmetric tail risks without producing excessive width in tranquil periods.

Student—t. Crisis-adjusted Student—¢ matches GMM in AvgAbsGap (0.0116) and per-
forms slightly worse in AC—Score (0.0221). Its parametric simplicity yields well-behaved
intervals, though tails are somewhat too narrow in post-COVID volatility, even with

crisis multipliers.

BMA. The best—performing BMA variant is without crisis adjustment, yielding the
lowest AvgAbsGap overall (0.0101) but a weaker AC—-Score (0.0371). This reflects pe-
riods of excellent calibration offset by sharp degradation in specific regimes (notably

2015-2020), which inflates the consistency penalty.

GARCH(1,1)-t. While GARCH with crisis adjustment improves on its unadjusted
counterpart in both AvgAbsGap and AC—Score, it remains the weakest performer overall
(0.0189, 0.082). Its intervals are noticeably tighter than other engines, which aids in

certain low—volatility phases but produces under—coverage in expansionary periods and

post—COVID.

Regime—level patterns. Across methods, crisis—adjusted variants tend to improve
calibration in the COVID block but can slightly overshoot in earlier periods. The
BMA no-adj variant, while leading on average gap, shows significant regime depen-
dence—excellent in blocks 2 and 4, weaker in block 3—suggesting sensitivity to shifts in
the underlying point—forecast error process. GMM maintains the most even performance
across all blocks, while Student—¢ is nearly as stable but more prone to under—coverage
in extreme volatility. GARCH displays the strongest regime dependence, benefiting from
its dynamic volatility adaptation in short-lived stress but struggling to match nominal

targets in sustained expansions.

For NFP interval forecasting, Gaussian Mizxture with crisis adjustment emerges as the
most reliable all-rounder—its combination of low AvgAbsGap and the best AC—Score

indicates both accurate calibration and stability across regimes. Student-t is a close
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second, offering a simpler alternative with competitive coverage. BMA is valuable when
the goal is to minimize average gap, but its regime sensitivity suggests complementing
it with a more stable engine in production. GARCH provides the tightest intervals and
fastest adaptation but at a calibration cost, making it better suited for risk—seeking or
directional-trading contexts rather than probability—calibrated forecasting. These find-
ings indicate no single engine dominates all objectives; a composite or regime-switching

approach could leverage each method’s strengths.

5.3.1 Interpreting Multiple Densities

When the live forecasting system produces multiple competing predictive densities for
the same NFP release—for example, from Gaussian—Mixture, Student—t, BMA, and
GARCH(1,1)-t models—it is important to interpret them in light of their historical per-

formance characteristics and methodological strengths.

1. Start with historical calibration metrics. The most direct way to assess which

density to lean on is through its empirical-coverage record:

e AvgAbsGap: Lower values indicate that nominal coverage levels match realised fre-

quencies more closely; this speaks to calibration.

e AC—Score: Balances calibration accuracy with stability across regimes. A low AC—Score

signals both good fit and robustness.

For NFP, the Gaussian-Mixture and Student—¢ engines have the tightest calibration
(AvgAbsGap ~ 0.011-0.012) and strongest AC—Scores. This implies that, all else equal,

their interval widths and shapes are most trustworthy as direct probabilistic statements.

2. Recognise regime—specific strengths. Some engines have profiles that vary

meaningfully by macro regime:

e Gaussian—Mixture: Most stable across blocks; particularly strong in early and late

expansions.

e Student—t: Heavy tails can better accommodate crisis—era outliers; tends to produce

wider central intervals in volatile conditions.
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e BMA: When not crisis—adjusted, can be the most sharply calibrated overall (lowest

AvgAbsGap), but with more variability across regimes.

¢ GARCH: Narrower bands in calm periods; most reactive to volatility spikes; suitable

when market—implied vol is a key conditioning input.

In practice, if the upcoming release is in a regime with elevated macro uncertainty (e.g.,
post—shock recovery), it is prudent to weigh Student—¢ or crisis—adjusted variants more

heavily.
3. Examine shape and tail behaviour. Even for equally well-calibrated methods,
the tails can differ markedly:

e Gaussian—Mixture: Can produce asymmetric or multi-modal densities if component

means diverge, reflecting genuine disagreement in the expert pool.

e Student—t and BMA.: Heavier tails; interpret tail quantiles as more generous al-

lowances for extreme surprises.

e GARCH: Often produces the narrowest tail estimates in calm regimes, but may over-

shoot in crisis—adjusted form.

If decision—making is tail-sensitive, heavier—tailed densities deserve greater weight.

4. Avoid over—reliance on a single engine. No single method dominates all metrics

in all regimes. A prudent approach is:

1. Identify the historically most reliable density by AC—Score.

2. Adjust subjective weight based on current regime characteristics.

3. Cross—check agreement in central coverage bands (e.g., 50-70%) across engines.

4. Investigate outliers in tail probabilities; if one method diverges sharply without regime

justification, treat with caution.

5. Operational guidance for NFP.

e Baseline: Gaussian—Mixture (Ro1124 CrisisAdj) for primary probabilistic guidance;

it has the best AC—Score and stable calibration. Use student-t as a fallback.
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e Sharpest bands: Use BMA (Rol1124 NoAdj) if calibrated tightness is preferred in

calm regimes, but cross—check against heavier—tailed alternatives.

e Vol-responsive overlay: Use GARCH(1,1)-t (CrisisAdj) when market—implied

volatility or recent macro releases suggest rapidly changing risk.

In live use, we recommend reporting a range of intervals from two complementary engines,

allowing the user to internalize both the central tendency and the plausible extremes.

6 Conclusion

Our unified forecasting framework demonstrates that even in a high—volatility, regime—shifting
environment such as U.S. Nonfarm Payrolls, carefully designed ensemble methods can
deliver a persistent directional edge over the crowd median and produce well-calibrated
probabilistic forecasts. On the point—forecast side, simple, short-horizon equal-weight
averages across contiguous forecasters—particularly 6-month equal-weight variants from
the inverse—error and EWMA families—provide the most stable accuracy—consistency
trade—off on the full history, while soft-BMA adds complementary directional strength
in calmer regimes. Multiplicative-weights updates contribute as a diversifying voter but
are not stand—alone leaders under our robustness criteria. On the distributional side, the
Gaussian—Mixture model with crisis adjustment emerges as the most reliable all-rounder
for interval calibration, followed closely by crisis—adjusted Student—t. BMA delivers the
smallest average coverage gap but with greater regime sensitivity, while GARCH’s adap-

tivity comes at the cost of under—coverage in long expansions.

Operational Guidance

e Directional-signal baseline: Use the T6 robust ensemble as default; T3 (reactive over-

lay) and T12 (stable backdrop) as context-dependent complements.

e Density publication: Primary = Gaussian—Mixture (Roll24, crisis-adjusted); secondary
cross-check = Student—¢ (Roll24, crisis-adjusted). Tail-sensitive decisions can upweight
heavier-tailed engines; calm-market options work may prefer the tighter BMA bands

(cross-check stability first).

e Regime awareness: Use stratified diagnostics to match the current environment to
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historical blocks where specific specs excelled.

Generalizability Roadmap

Although our empirical evaluation is anchored to NFP, the pipeline is designed to be

indicator—agnostic. Extending the framework involves:

1. Schema harmonization: Ingest and standardize historical forecast vintages for the

target indicator (e.g., CPI, Retail Sales, ISM).

2. Error—process characterization: Replicate exploratory diagnostics (distribution fit,
spread—error elasticity) to select appropriate distributional families and crisis—gating

logic.

3. Model re-tuning: Re-run walk—forward hyperparameter searches for point—forecast

learners to accommodate indicator—specific forecast dispersion and volatility patterns.

4. Density calibration: Back-test all distributional engines with indicator—specific resid-
uals to determine the best—performing primary/secondary densities and adjust crisis

multipliers after running the corresponding regressions.
5. Regime definition: Adapt macro-regime partitions to the indicator’s sensitivity

By following this process, the ensemble/density framework can be ported to a range
of macroeconomic releases, yielding a library of consistent, cross—indicator probabilistic

forecasts suitable for portfolio—level aggregation and macro-risk monitoring.

Limitations

Several constraints qualify our findings. Economist forecasts are made ex—ante using
initially released NFP figures, while evaluation uses the latest revised values; revisions
can materially alter measured errors in ways forecasters could not anticipate. In addition,
the contiguity filter stabilizes weights but excludes intermittent forecasters, potentially

biasing the panel toward established institutions.
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A Appendix

A.1 Statistical Tests and Definitions

This section provides brief definitions of the statistical tests and metrics used to evaluate

forecast performance in our pipeline.

e Root Mean Squared Error (RMSE): Measures the square root of the mean of
squared forecast errors, providing an aggregate measure of point forecast accuracy in

the same units as the target variable.

e Hit Rate (HR): The proportion of forecasts for which the predicted direction of

change (relative to the consensus median) matches the actual realised direction.

e Binomial Test: A nonparametric test of whether the observed hit rate differs sig-
nificantly from the null hypothesis of a 50% success probability. Useful for detecting

directional skill.

e Pesaran—Timmermann Test (PT): A statistical test for directional accuracy that
accounts for potential biases in the unconditional distribution of actual and predicted
directions. It tests whether forecasts and outcomes are positively dependent beyond

chance.

e Diebold—Mariano Test (DM): Compares the predictive accuracy of two competing
forecasts (here, the “smart” model vs. the consensus median) by testing whether the
mean loss differential is statistically different from zero, accounting for serial correla-

tion.

e Mean Absolute Coverage Gap (MAG): For prediction intervals, the mean absolute
deviation between empirical coverage and the nominal target coverage level, averaged

across all levels tested.

e Accuracy x Consistency Score (AC): A composite measure of performance across

regimes. For point/directional forecasts,
AC = (1 — HitRate) + A Oblock s
where oo i the standard deviation of block-level hit rates. For distributional fore-
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casts, since Accuracy = 1 — MAG,

AC = MAG + A Oblock s

where opock is the standard deviation of block-level coverage gaps.

A.2 Comprehensive Backtest Results

Specification identifier convention. For compactness, each backtest entry is labeled

with a spec_id that encodes the key hyperparameters of the forecast specification in a

single string. The naming convention follows the template:

{family} w{W}_d{p} m{rule}

where:

family denotes the model family, e.g., inv_err (inverse—error), ewma (exponentially
weighted moving average), soft_bma (soft Bayesian model averaging), or mwu (multi-

plicative weights update).

w{W} is the trailing window length in months used to compute performance statistics

(e.g., w6 means a 6-month window).

d{p} is the temporal decay factor for EWMA families only; it is omitted for static-
weight families (e.g., d0.85 means p = 0.85).

rule specifies the weighting scheme applied to individual forecasters: equal_weight,

inverse_mae, Or inverse_mse.

For MWU, the spec identifier instead uses {family}_eta{n} where 7 is the learning

rate.

For soft-BMA, the identifier takes the form soft_bma w{W} nu{v}, where v is the fixed

degrees—of-freedom parameter in the Student—t likelihood.

Example: The specification ewma w6_d0.85 minverse mse corresponds to an exponen-

tially weighted moving average (ewma) model with a 6-month look-back window (w6), a
temporal decay factor of p = 0.85 (d0.85), and inverse-mean—squared—error weighting of

forecasters (minverse mse).
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A.2.1 Inverse—Error Backtests: Full Tables

This appendix reports the complete backtests for the inverse—error family across all win-
dow lengths (W € {3, 6, 12}) and weighting rules (inverse-MSE, inverse-MAE, equal-weight).
We list, for each specification, the RMSE of the smart forecast and the crowd median,
directional hit rate and its exact binomial p—value, the Pesaran—Timmermann p-value
(PT_p), and the Diebold-Mariano p—value (DM_p). Summary “winners” for each panel are

provided below the full tables (candidate specifications for robust ensemble).

Table 11: Inverse—error backtests on the COVID-filtered panel.  Abbreviations:
W=window; RMSE_s=RMSE(smart); RMSE_.m=RMSE(median); HR=hit rate.

spec_id W method RMSE.s RMSE.m HR Binom_p PT_p DM_p
inv_err w3 minverse mse 3 inverse_mse 72.256 73.173 0.529 0.426 0.372 0.139
inv_err w3 minverse mae 3 inverse_mae 72.238 73.173 0.533 0.353 0.313 0.036
inv_err w3 mequal weight 3 equal_weight 72.316 73.173 0.555 0.111 0.095 0.008
inv_err w6 minverse mse 6 inverse_mse 71.746 72.955 0.571 0.038 0.029 0.020
inv_err w6 minverse mae 6 inverse_mae 71.865 72.955 0.558 0.095 0.075 0.013
inv_err w6 mequal weight 6 equal_weight 71.951 72.955 0.580 0.019 0.015 0.013
inv_err wil2 minverse mse 12 inverse_mse 69.782 70.913 0.564 0.067 0.0564 0.028
inv_err wl2 minverse mae 12 inverse_mae 69.923 70.913 0.550 0.155 0.126  0.045
inv_err_wi2 mequal_weight 12 equal_weight 70.096 70.913 0.555 0.119 0.100 0.077

Table 12: COVID-filtered panel winners (inverse—error family).

Category Specification

Lowest RMSE inv_err wi2 minversemse (window = 12, method = inverse_mse)
Highest HitRate inv_err w6 mequal weight (window = 6, method = equal weight)

Robust Winner inv_err wl2 minverse mse
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Table 13: Inverse—error backtests on the full panel.

RMSE_s=RMSE(smart); RMSE_ m=RMSE(median); HR=hit rate.

Abbreviations:

W=window;

spec_id W method RMSE.s RMSE.m HR Binom p PT p DM p
inv_err w3 _minverse mse 3 inverse_mse 664.827 641.034 0.551 0.109 0.104 0.331
inv_err w3 _minverse_mae 3 inverse_mae 641.926 641.034 0.551 0.109 0.101 0.837
inv_err w3 mequal weight 3 equal-weight 635.159 641.034 0.559 0.064 0.058 0.085
inv_err w6 minverse mse 6 inverse_mse 666.750 644.653 0.569 0.030 0.028 0.303
inv_err w6 minverse_mae 6 inverse_mae 635.931 644.653 0.565 0.040 0.037 0.264
inv_err w6 mequal weight 6 equal-weight 619.565 644.653 0.585 0.008 0.007 0.283
inv_err wil2 minverse mse 12 inverse_mse 679.432 651.933 0.571 0.028 0.027  0.368
inv_err wl2 minverse mae 12 inverse_mae 643.409 651.933 0.559 0.069 0.068 0.111
inv_err wl2 mequal weight 12 equal weight 631.802 651.933 0.555 0.090 0.085 0.207

Table 14:

Full panel winners (inverse—error family).

Category

Specification

Lowest RMSE & Highest HitRate

Robust Winner

inv_err_w6_mequal_weight

inv_err_w3_mequal_weight

A.2.2 EWMA Backtests: Full Tables

This appendix reports the complete EWMA backtests across all window lengths W €
{3,6,12}, decay factors p € {0.75,0.85,0.95}, and weighting rules (inverse-MSE, in-

verse-MAE, equal-weight). For each specification we list the RMSE of the smart forecast

and the crowd median, the directional hit rate and its exact binomial p—value, the Pe-

saran—Timmermann p-value (PT_p), and the Diebold-Mariano p—value (DM_p). Summary

“winners” for each panel are provided below the full tables (candidate specifications for

robust ensemble).
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Table 15: EWMA backtests on the COVID-filtered panel.
RMSE_s=RMSE(smart); RMSE_ m=RMSE(median); HR=hit rate.

Abbreviations:

spec_id method RMSE s RMSE.m HR Binom p PT p DM
ewma _w3_d0.75 minverse mse inverse_mse 72.218 73.173 0.542 0.232 0.199 0.126
ewma_w3_d0.75 minverse_mae inverse_mae 72.213 73.173 0.533 0.353 0.311 0.035
ewma_w3_d0.75 mequal weight equal weight 72.316 73.173 0.555 0.111 0.095 0.008
ewma_w3_d0.85 minverse mse inverse_mse 72.236 73.173 0.537 0.288 0.246 0.132
ewma_w3_d0.85_minverse mae inverse_mae 72.225 73.173 0.529 0.426 0.377  0.035
ewma_w3_d0.85 mequal weight equal weight 72.316 73.173 0.555 0.111 0.095 0.008
ewma w3_d0.95 minverse mse inverse_mse 72.250 73.173 0.529 0.426 0.372 0.136
ewma_w3_d0.95 minverse mae inverse_mae 72.234 73.173 0.537 0.288 0.2563 0.036
ewma_w3_d0.95 mequal weight equal_weight 72.316 73.173 0.555 0.111 0.095 0.008
ewma w6_d0.75 minverse mse inverse_mse 71.762 72.955 0.567 0.052 0.039 0.032
ewma_w6_d0.75 minverse_mae inverse_mae 71.866 72.955 0.549 0.160 0.135 0.021
ewma_w6_d0.75 mequal weight equal_weight 71.951 72.955 0.580 0.019 0.015 0.013
ewma _w6_d0.85 minverse mse inverse_mse 71.760 72.955 0.580 0.019 0.013 0.027
ewma_w6_d0.85 minverse mae inverse_mae 71.869 72.955 0.549 0.160 0.133 0.018
ewma w6_d0.85 mequal_weight equal weight 71.951 72.955 0.580 0.019 0.015 0.013
ewma w6_d0.95 minverse mse inverse_mse 71.752 72.955 0.576 0.027 0.019 0.022
ewma_w6_d0.95 minverse mae inverse_mae 71.867 72.955 0.562 0.071 0.056 0.015
ewma w6_d0.95 mequal_weight equal weight 71.951 72.955 0.580 0.019 0.015 0.013
ewma w12 d0.75 minverse mse inverse_mse 69.895 70.913 0.537 0.310 0.262 0.070
ewma_wl2.d0.75minverse mae inverse_mae 69.968 70.913 0.528 0.456 0.400 0.069
ewma w12_d0.75 mequal weight equal weight 70.096 70.913 0.555 0.119 0.100 0.077
ewma w12 d0.85 minverse mse inverse_mse 69.860 70.913 0.555 0.119 0.096 0.050
ewma_w12.d0.85_minverse mae inverse_mae 69.953 70.913 0.537 0.310 0.265 0.059
ewma w12 d0.85 _mequal weight equal_weight 70.096 70.913 0.555 0.119 0.100 0.077
ewma w12 d0.95 minverse mse inverse_mse 69.809 70.913 0.560 0.090 0.071 0.034
ewma_wl12.d0.95 minverse mae inverse_mae 69.933 70.913 0.546 0.198 0.163 0.049
ewma_wl12_d0.95 mequal weight equal_weight 70.096 70.913 0.555 0.119 0.100 0.077
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Table 16: COVID-filtered panel winners (EWMA family).

Category Specification

Lowest RMSE ewma w12.d0.95 minverse mse (window = 12, decay = 0.95, method = inverse_ms
Highest HitRate ewma w6 d0.75 mequal weight (window = 6, decay = 0.75, method = equal weigh

Robust Winner ewma_w12.d0.95 minverse_mse
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Table 17: EWMA backtests on the full panel. Abbreviations: RMSE_s=RMSE(smart);
RMSE_m=RMSE(median); HR=hit rate.

spec_id method RMSE_s RMSE_.m HR Binom_p PT_p DM_p
ewma_w3_d0.75 minverse mse inverse_mse 666.253 641.034 0.563 0.048 0.045 0.329
ewma w3_d0.75 minverse mae inverse_mae 643.615 641.034 0.551 0.109 0.102 0.655
ewma w3_d0.75 mequal weight equal weight 635.159 641.034 0.559 0.064 0.058 0.085
ewma_w3_d0.85 minverse mse inverse_mse 665.679 641.034 0.559 0.064 0.061 0.330
ewma_w3_d0.85_minverse mae inverse_mae 642.891 641.034 0.548 0.139 0.132 0.718
ewma w3_d0.85 mequal weight equal weight 635.159 641.034 0.559 0.064 0.068 0.085
ewma_w3_d0.95 minverse mse inverse_mse 665.110 641.034 0.551 0.109 0.104 0.331
ewma_w3_d0.95 minverse_mae inverse_mae 642.233 641.034 0.555 0.084 0.078 0.794
ewma w3_d0.95 mequal weight equal weight 635.159 641.034 0.559 0.064 0.068 0.085
ewma_w6_d0.75 minverse mse inverse_mse 668.305 644.653 0.573 0.022 0.020 0.306
ewma_w6_d0.75 minverse_mae inverse_mae 638.035 644.653 0.562 0.054 0.050 0.263
ewma w6_d0.75 mequal weight equal weight 619.565 644.653 0.585 0.008 0.007 0.283
ewma_w6_d0.85 minverse mse inverse_mse 667.697 644.653 0.585 0.008 0.007 0.304
ewma_w6_d0.85 minverse mae inverse_mae 637.168 644.653 0.562 0.054 0.060 0.264
ewma_w6_d0.85 mequal weight equal weight  619.565 644.653 0.585 0.008 0.007 0.283
ewma_w6_d0.95 minverse mse inverse_mse 667.071 644.653 0.573 0.022 0.020 0.303
ewma_w6_d0.95 minverse_mae inverse_mae 636.334 644.653 0.573 0.022 0.020 0.264
ewma_w6_d0.95 mequal weight equal weight  619.565 644.653 0.585 0.008 0.007  0.283
ewma_wl12.d0.75minverse mse inverse_mse 683.621 651.933 0.543 0.188 0.187  0.362
ewma w12 d0.75 minverse mae inverse_mae 649.546 651.933 0.531 0.347 0.347  0.541
ewma_wl2_d0.75_mequal weight equal weight  631.802 651.933 0.555 0.090 0.085 0.207
ewma w12 d0.85 minverse mse inverse_mse 682.431 651.933 0.559 0.069 0.067 0.364
ewma w12 d0.85 minverse mae inverse_mae 647.630 651.933 0.539 0.233 0.233 0.214
ewma_wl2_d0.85 _mequal weight equal weight  631.802 651.933 0.555 0.090 0.085 0.207
ewma w12 d0.95 minverse mse inverse_mse 680.687 651.933 0.567 0.038 0.037 0.366
ewma_wl2_d0.95 minverse mae inverse_mae 645.029 651.933 0.555 0.090 0.089 0.107
ewma w12 d0.95 mequal weight equal weight  631.802 651.933 0.555 0.090 0.085 0.207
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Table 18: Full panel winners (EWMA family).

Category Specification

Lowest RMSE & Highest HitRate ewma w6_d0.75 mequal_weight

Robust Winner ewma_w3_d0.75 mequal_weight

A.2.3 Soft-BMA Backtests: Full Tables

This appendix reports the complete soft-BMA backtests across all window lengths W &
{3,6,12} and tail parameters v € {3,5,10,25}. For each specification we list the RMSE
of the smart forecast and the crowd median, the directional hit rate (HR), the exact
binomial p—value, the Pesaran-Timmermann p-value (PT_p), and the Diebold-Mariano
p—value (DM_p). To keep the layout compact we omit auxiliary columns; the window and
v are encoded in spec_id. Summary “winners” for each panel are provided below the

full tables.

Table 19: soft-BMA backtests on the COVID-filtered panel. Abbreviations:
RMSE _s=RMSE(smart); RMSE_ m=RMSE(median); HR=hit rate.

spec_id RMSE s RMSE.m HR Binom p PT p DM p
soft_bma w3_nu3 72.549 73.173 0.520 0.596 0.538  0.449
soft_bma_w3_nub 72.556 73.173 0.533 0.353 0.308 0.455
soft_bma w3 nul0 72.563 73.173 0.533 0.353 0.308 0.461
soft_bma w3_nu25 72.569 73.173 0.524 0.507 0.449  0.466
soft_bma_w6_nu3 71.667 72.955 0.558 0.095 0.076  0.185
soft_bma_w6_nub 71.663 72.955 0.562 0.071 0.057 0.185
soft_bma w6 null 71.664 72.955 0.562 0.071 0.057 0.186
soft_bma w6 _nu25 71.668 72.955 0.562 0.071 0.057 0.188
soft_bma w12 nu3 67.656 70.913 0.578 0.025 0.020 0.067
soft_bma w12 nub 67.679 70.913 0.573 0.036 0.028  0.064
soft_bma w12 null 67.719 70.913 0.583 0.018 0.013  0.062
soft_bma w12 nu25 67.771 70.913 0.583 0.018 0.014 0.060
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Table 20: COVID-filtered panel winners (soft-BMA).

Category Specification

Lowest RMSE  soft_bma w12 nu3 (window =12, v = 3)
Highest HitRate soft_bma w12 nul0 (window = 12, v = 10)

Robust Winner soft_bma_wl2 nu3

Table 21: soft-BMA backtests on the full panel. Abbreviations: RMSE_s=RMSE(smart);
RMSE_m=RMSE(median); HR=hit rate.

spec_id RMSE_ s RMSE.m HR Binom p PT_p DM_p
soft_bma_w3_nu3 686.489 641.034 0.525 0.459 0.441  0.296
soft_bma_w3_nub 687.010 641.034 0.536 0.267 0.255 0.295
soft_bma w3_null 687.472 641.034 0.536 0.267 0.255 0.293
soft_bma_w3_nu25 687.793 641.034 0.529 0.388 0.376  0.292
soft_bma_w6_nu3 761.342 644.653 0.558 0.072 0.067  0.279
soft_bma w6 _nub 762.128 644.653 0.558 0.072 0.067  0.278
soft_bma w6 null 762.680 644.6563 0.558 0.072 0.067  0.277
soft_bma_w6_nu25 762.940 644.653 0.558 0.072 0.067 0.275
soft_bma w12 nu3 837.900 651.933 0.575 0.020 0.019 0.285
soft_bma w12 nub 841.044 651.933 0.567 0.038 0.036 0.284
soft_bma wil2 nul0  844.073 651.933 0.571 0.028 0.027 0.284
soft_bma wi2 nu25  846.392 651.933 0.571 0.028 0.027  0.282

Table 22: Full panel winners (soft-BMA).

Category Specification

Lowest RMSE soft_bma_w3_nu3
Highest HitRate soft_bma w12 nu3
Robust Winner — (no specification meets the DM/PT < 0.10 gate)
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A.2.4 MWU Backtests: Full Tables

This appendix reports the complete backtests for the multiplicative weights update
(MWU) family across step sizes n € {0.001,...,0.019}. For each specification we list
the RMSE of the smart forecast and the crowd median, directional hit rate with exact
binomial p-value, Pesaran-Timmermann p-value (PT_p), and Diebold-Mariano p-value

(DM_p). Summary “winners” are provided below the full tables.

Table 23: MWU backtests on the COVID-filtered panel. Abbreviations:
RMSE_s=RMSE(smart); RMSE_.m=RMSE(median); HR=hit rate.

spec_id RMSE s RMSE.m HR Binom p PT p DM p
mwu_eta0.001  476.387 651.933 0.524 0.490 0.717  0.307
mwu_eta0.003  595.166 651.933 0.539 0.233 0.277  0.293
mwu_eta0.005  435.725 651.933 0.528 0.415 0.942  0.309
mwu_eta0.007  631.401 651.933 0.488 0.754 0.469 0.284
mwu_eta0.009  631.507 651.933 0.480 0.572 0.469  0.287
mwu_eta0.011  435.769 651.933 0.496 0.950 0.772  0.309
mwu_eta0.013  435.990 651.933 0.531 0.347 0.942  0.309
mwu_eta0.015  436.015 651.933 0.543 0.188 0.828  0.309
mwu_eta0.017  436.000 651.933 0.535 0.286 0.828  0.309
mwu_eta0.019  436.032 651.933 0.531 0.347 0.942  0.309

Table 24: COVID-filtered panel winners (MWU family).

Category Specification

Lowest RMSE mwu_eta0.005
Highest HitRate mwu_eta0.015
Robust Winner ~ None (DM_p & PT_p > 0.10)
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Table 25: MWU backtests on the full panel. Abbreviations: RMSE_s=RMSE(smart);
RMSE_m=RMSE(median); HR=hit rate.

spec_id RMSE_s RMSE.m HR Binom_p PT_p DM_p
mwu_eta0.001 72.519 70.913 0.509 0.839 0.755  0.220
mwu_eta0.003 76.251 70.913 0.523 0.542 0.696 0.032
mwu_eta0.005 77.652 70.913 0.500 1.000 0.348 0.003
mwu_eta0.007 80.261 70.913 0.472 0.456 0.211  0.001
mwu_eta0.009 79.540 70.913 0.459 0.250 0.159  0.002
mwu_eta0.011 75.939 70.913 0.477 0.542 0.211  0.015
mwu_eta0.013 74.683 70.913 0.523 0.542 0.532  0.070
mwu_eta0.015 74.856 70.913 0.537 0.310 0.639 0.052
mwu_eta0.017 74.860 70.913 0.528 0.456 0.639 0.052
mwu_eta0.019 75.069 70.913 0.523 0.542 0.532  0.040

Table 26: Full panel winners (MWU family).

Category Specification

Lowest RMSE mwu_etal.001
Highest HitRate mwu eta0.015
Robust Winner ~ None (DM_p & PT_p > 0.10)

A.2.5 Distributional Methods: Full Tables

This appendix reports complete empirical-coverage back—tests for all distributional-forecasting
engines evaluated on the Full panel. For each method, we present empirical coverage at
nominal levels (50%, 60%, 70%, 80%, 90%, 95%), mean absolute coverage gap (AvgAbs-
Gap; lower is better), and the Accuracy—Consistency (AC) score computed across four
long-horizon strata. Crisis—adjusted (CrisisAdj) variants scale predictive intervals dur-

ing high—volatility regimes.
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Table 27: Gaussian—Mixture empirical coverage results (Full panel).

Spec 50% 60% T70% 80% 90% 95% AvgAbsGap
Roll24 CrisisAdj 0.506 0.626 0.716 0.798 0.893 0.938 0.0114
Roll24_NoAdj 0.490 0.609 0.700 0.774 0.872 0.922 0.0170

Gaussian—Mixture.

Best spec: Ro1124 _CrisisAdj, AC-Score = 0.0173.

Table 28: Stratified AvgAbsGap by block for GMM Ro1124 CrisisAdj (Full panel).

Block Start End AvgAbsGap
1 2005-06-03  2010-06-04 0.030
2 2010-07-02  2015-07-02 0.017
3 2015-08-07 2020-08-07 0.025
4 2020-09-04 2025-08-01 0.028
All 2003-06-06 2025-08-01 0.011

Table 29: Student—t empirical coverage results (Full panel).

Spec 50% 60% T70% 80% 90% 95% AvgAbsGap
Roll24_CrisisAdj 0.504 0.603 0.682 0.822 0.917 0.955 0.0116
Roll24_NoAdj 0.492 0.574 0.657 0.802 0.901 0.938 0.0150

Student—t.

Best spec: Ro1124 CrisisAdj, AC-Score = 0.022.

Table 30: Stratified AvgAbsGap by block for Student-t Roll24 CrisisAdj (Full

panel).
Block Start End AvgAbsGap
1 2005-06-03  2010-06-04 0.023
2 2010-07-02 2015-07-02 0.016
3 2015-08-07 2020-08-07 0.034
4 2020-09-04 2025-08-01 0.044
All 2003-06-06 2025-08-01 0.009
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Table 31: BMA empirical coverage results (Full panel).

Spec 50% 60% T70% 80% 90% 95% AvgAbsGap
Roll24 CrisisAdj 0.521 0.628 0.723 0.810 0.909 0.950 0.0150
Roll24_NoAdj 0.504 0.612 0.702 0.785 0.897 0.934 0.0101

BMA. Best spec: Ro1124 NoAdj, AC-Score = 0.0371.

Table 32: Mean—absolute coverage gap by block for BUA Ro1124 NoAdj (Full panel).

Block Start End AvgAbsGap
1 2005-06-03  2010-06-04 0.028
2 2010-07-02  2015-07-02 0.010
3 2015-08-07  2020-07-02 0.075
4 2020-08-07 2025-07-03 0.053
All 2003-06-06  2025-07-03 0.009

Table 33: GARCH(1,1)~t empirical coverage results (Full panel).

Spec

50% 60%

70%

80% 90%

GARCH _CrisisAdj
GARCH_NoAdj

0.554 0.657 0.723 0.818 0.909 0.955
0.533 0.645 0.707 0.802 0.888 0.934

GARCH(1,1)-t.

Table 34: Stratified AvgAbsGap by block for GARCH NoAdj (Full panel).

Best spec: GARCH_NoAdj, AC-Score = 0.0823.

Block Start End AvgAbsGap
1 2005-06-03  2010-06-04 0.014
2 2010-07-02  2015-07-02 0.018
3 2015-08-07  2020-07-02 0.086
4 2020-08-07 2025-07-03 0.147
All 2003-06-06  2025-07-03 0.019
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Table 35: Consolidated best—spec performance across distributional methods ( Full panel).

Method Best Tag AvgAbsGap AC—Score
Gaussian—Mixture Roll24_CrisisAd] 0.0114 0.0173
Student—t Roll24_CrisisAd]j 0.0116 0.0221
BMA Roll24_NoAdj 0.0101 0.0371
GARCH(1,1)-t GARCH_NoAdj 0.0189 0.0823

A.3 Top Weighted Economists for August 2025 Print

This appendix reports the top ten most heavily weighted economists for each model family
in the live forecast snapshot for the August 2025 NFP release, as well as the top ten in
the equal-model blend (25% per family).

Methodology. At the live evaluation date, we compute weights for each economist

within each model family by:

1. Filtering the snapshot to the most recent month.

2. Averaging weights across all live specifications and panels for that family.
3. Normalising so weights sum to 1 within each family.

For the equal-model blend, each family’s weight vector is scaled to a target share of 25%
and then summed across families to yield the final blended weights. These represent each

economist’s proportional influence on the aggregate signal.

How to read this table: Higher model weights indicate that the economist’s forecasts
currently have greater influence on the model family’s point forecast. A high rank across
multiple families signals an economist whose recent accuracy patterns have been broadly
rewarded. Conversely, low or absent weights indicate that the economist has either been

inactive or received little weight based on recent performance.
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Inverse—Error

Economist

Model Weight

David P Kelly

Seiji Katsurahata

Ashworth /Dales

Rhys Herbert

Derek Holt

Jason M Schenker

Joe Brusuelas/Tuan Nguyen
Michael R Englund

Russell T Price

Michael E Feroli

3.90%
3.11%
2.88%
2.77%
2.60%
2.58%
2.50%
2.49%
2.45%
2.42%

Economist Model Weight
David P Kelly 3.99%
Seiji Katsurahata 3.19%
Ashworth/Dales 3.05%
Rhys Herbert 3.03%
EWMA  jason M Schenker 2.69%
Derek Holt 2.68%
Michael R Englund 2.63%
Joe Brusuelas/Tuan Nguyen 2.51%
Michael E Feroli 2.50%
Oscar Munoz 2.43%

o8



Verition Fund Management

Economist Model Weight
David P Kelly 10.91%
Seiji Katsurahata 7.43%
Russell T Price 6.10%
David H Sloan 4.97%
soft-BMA  perek Holt 4.69%
Richard F Moody 4.65%
Ashworth /Dales 4.35%
Joe Brusuelas/Tuan Nguyen 4.32%
Rhys Herbert 3.38%
James Egelhof 3.19%
Economist Model Weight
Yongxin Chen 6.92%
Joe Brusuelas/Tuan Nguyen 6.75%
Andreas Busch 2.06%
Andrew Zatlin 2.06%
MWU  Avery Shenfeld 2.06%
Besch /Luetje 2.06%
Brett Ryan 2.06%
Christophe Barraud 2.06%
Christopher Hodge 2.06%
Crandall/Jordan 2.06%
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Equal-Model Blend

Economist

Weight

David P Kelly

Joe Brusuelas/Tuan Nguyen
Seiji Katsurahata

Yongxin Chen

Russell T Price
Ashworth/Dales

Derek Holt

David H Sloan

Rhys Herbert

Richard F Moody

5.21%
4.02%
3.95%
3.39%
3.24%
3.08%
3.01%
2.83%
2.81%
2.711%
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