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1 Introduction

We present a comprehensive, generalizable pipeline that delivers real-time point and dis-

tributional forecasts for key U.S. macroeconomic releases. Our goal is to create a stream-

lined framework that (i) ingests historical macroeconomic data, (ii) produces point/direc-

tional predictions, and (iii) defines calibrated prediction bands to quantify uncertainty to

assist with portfolio construction, position sizing, and risk management decisions ahead

of notable macroeconomic releases.

1.1 Scope

This study focuses on the Change in Nonfarm Payrolls (NFP TCH), released

monthly on the first Friday at 8:30 a.m. ET. NFP measures the net change in U.S.

non-farm employment and is generally regarded as the most influential labor-market in-

dicator for financial markets. It is a primary driver of interest rate expectations and

FX volatility, particularly in the immediate aftermath of its release where large surprises

have historically produced substantial knee-jerk market reactions.

By concentrating on a single, high-impact indicator, we conduct a targeted evaluation of

the proposed forecasting framework. While the empirical results presented are specific to

NFP, the analytical methodology is generalizable to other macroeconomic releases with

similar characteristics and sufficient forecast coverage.

2 Analytical Framework

We break down our unified analytical pipeline into five stages.

• Data: Each workbook is reshaped into a long panel and written to parquet. Schema

harmonization happens here, so all downstream code is indicator-agnostic and lends

to our framework’s generalizability. We restrict the analysis window to begin in

June 2003 (2003–06), coinciding with the introduction of the CES birth–death ad-

justment; pre-2003 vintages are excluded to avoid a methodology break.

• Exploration: Diagnostics such as rolling error plots, distribution tests (Ljung-Box,

Kolmogorov-Smirnov), and analytical regressions are run to detect regime shifts and
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inform subsequent modeling decisions.

• Point and Directional Forecast Ensembles: We deploy five forecast engines:

(i) static inverse-error weighting, (ii) exponentially weighted moving averages, (iii)

soft Bayesian model averaging with Student-t likelihoods, (iv) multiplicative weights

update and (v) a robust majority-vote ensemble. For each method, hyperparameter

grids are traversed in walk-forward loops that yield out-of-sample smart predictions

and directional calls relative to the consensus median.

• Distributional Engines: Four distributional forecasting methods are deployed

to quantify uncertainty: Student-t, t-GARCH, Gaussian mixture models (GMM),

and Bayesian model averaging (BMA); an optional spread-elastic crisis multiplier

dynamically adjusts to time-varying volatility. For each distributional engine, the

result is a full predictive density and calibrated prediction intervals for every release.

• Evaluation: A common rubric scores point, directional, and interval performance

(RMSE, DM; hit rate, binomial, PT; coverage targets and AC). Formal definitions

appear in §A.1.

3 Exploratory Analysis

3.1 Median-Error Distribution and the COVID Shock

We begin by inspecting the stability of consensus accuracy through time. Figure 1 plots

the 6-month rolling RMSE of the crowd median. The pandemic period features a vertical

spike that dwarfs the surrounding history, indicating that a handful of months dominate

squared-error risk. This motivates maintaining two evaluation panels throughout the

paper: a full panel (complete history, including the pandemic shock) and a COVID-

filtered panel that excludes the 2020–2022 extremes when we want to study typical

regimes. These findings also suggest that models have to be regime-aware.
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Figure 1: Six-month rolling RMSE of the crowd-median NFP forecast. The pandemic

shock generates a discontinuous jump in error magnitude, motivating the use of both full

and COVID-filtered panels.

3.2 Distributional form of median errors.

On the COVID-filtered panel, the distribution of median-forecast errors is well captured

by a symmetric, heavy-tailed Student-t. Figure 5 overlays the fitted tν(µ, σ) density on the

histogram of median errors; Figure 3 shows a QQ-plot against the Normal, highlighting

tail deviations consistent with excess kurtosis. A formal goodness-of-fit check against the

fitted Student-t does not reject at conventional levels:

K–S vs. fitted t1: D = 0.036, p = 0.9143 and CvM2: W 2 = 0.022, p = 0.9947.

These diagnostics support using a Student-t baseline for error modeling.

2One-sample Kolmogorov–Smirnov goodness-of-fit test comparing the empirical CDF of the median
errors to the fully specified Student-t CDF fitted by MLE; D = supx |Fn(x) − F (x)|. The null is that
the data are i.i.d. draws from that distribution.

2Cramér–von Mises goodness-of-fit test using the integrated squared difference
∫
(Fn(x) −

F (x))2 dF (x), emphasizing overall shape rather than the single worst deviation. Same null as above.
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Figure 2: Histogram of median-forecast errors with fitted Student-t overlay (COVID-

filtered panel). The fit captures central mass and tails.

Figure 3: QQ-plot of median-forecast errors vs. Normal (COVID-filtered panel). System-

atic tail departures motivate heavy-tailed modeling.

Two consequences flow from this exploration:

1. Panel design. Because the pandemic months dominate RMSE, we report results on
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both the full and COVID-filtered panels to separate typical calibration from crisis

behavior.

2. Distributional choice. The adequacy of the Student-t fit informs our distributional

engines (§4.2.1, §4.2.2, §4.2.3, §4.2.4) and our soft-BMA weighting scheme (§4.1.3),

which explicitly leverages Student-t likelihoods to remain robust to fat tails.

3.3 Cross-Sectional Spread as an Ex-Ante Proxy of Forecast

Risk

Before the print we observe the cross-sectional spread of submitted forecasts, st =

stdev{fi,t}. After the print we observe the realized miss of the crowd median, |et| =

|fmed
t − yt|. If disagreement contains information about event risk, st should co-move

with |et|. This gives us an ex-ante knob to widen (or not) our prediction bands when

quantifying uncertainty.

Figure 4: Cross-section spread vs. absolute median error (COVID-filtered vs. full sample).

Table 1 reports linear (Pearson) and rank (Spearman) correlations between st and |et|.

The COVID-filtered panel shows small but statistically significant associations, while the

full sample shows a very strong Pearson correlation and a moderate Spearman correlation.

The gap between the Pearson and Spearman statistics suggests that a handful of extreme

months bend the relationship, which is precisely the regime where interval width matters

most.
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Table 1: Correlation between cross-sectional spread st and absolute median error |et|.

Panel Pearson r (p-val) Spearman ρ (p-val)

COVID-filtered 0.168 (0.0105) 0.182 (0.0057)

Full sample 0.710 (< 10−4) 0.347 (< 10−4)

We formalize the slope via a Newey–West OLS on logs (leveraging properties of elasticity

in a log-log regression),

ln |et| = β0 + β1 ln st + εt,

so β1 is the elasticity of the miss with respect to spread. Results:

Table 2: Log–log regression ln |et| = β0 + β1 ln st (HAC).

Panel N β̂0 β̂1 SE(β̂1) p-val R2

COVID-filtered 228 2.596 0.312 0.224 0.164 0.009

Full sample 264 1.019 0.792 0.074 < 10−22 0.236

The COVID-filtered elasticity is small and statistically indistinguishable from zero; the

full-sample elasticity is ≈ 0.79, highly significant. Interpretation: outside crises, disagree-

ment adds little incremental information; in crisis months, disagreement scales errors

almost proportionally on a log scale. The discrepancy in statistical significance of the

coefficients implies a dominance by a few enormous months and informs our choice of a

gated, crisis-dependent adjustment.

The elasticity β̂1≈0.79 suggests a transparent rescaling of any baseline half-width hL,t:

mt =

(
st

median{st−k : 1 ≤ k ≤ 24}

)βt

, h adj
L,t = mt · hL,t.

To avoid unnecessary widening in ordinary months (where the COVID-filtered slope is

weak), we gate the exponent:

βt =


0, st ≤ Pct95{st−k : 1 ≤ k ≤ 24},

0.80, st > Pct95{st−k : 1 ≤ k ≤ 24}.
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In doing so, we are able to (i) use the crowd’s contemporaneous disagreement st as an ex-

ante stress proxy; (ii) anchor the curvature of the adjustment to the estimated elasticity

(≈ 0.8); (iii) activate only in the right tail of disagreement where both correlation and

regression signal are strongest; (iv) select the gating percentile via walk-forward coverage

validation (we use the 95th percentile heuristic; this can be scaled to account for sys-

tematic under- or overcoverage). The result is a crisis-elastic interval: tight in tranquil

regimes, wider exactly when disagreement telegraphs tail risk.

3.4 Cross-Section vs. Rolling Time-Series Student-t Coverage

Given the correlation between disagreement in the cross-section and median errors, we

might ask: can we calibrate reliable prediction intervals straight from the cross-section of

economists’ forecasts at each release (XS-t), or do we need a rolling time-series fit to past

median-forecast errors (TS-t)? In simpler terms: does the cross-section contain enough

information to properly quantify uncertainty, or do we necessarily need information from

errors in the time-series?

For each release t and nominal level L ∈ {50, 60, 70, 80, 90, 95}%, we test whether the

realized print falls inside a two-sided Student-t band:

• XS-t: fit tν(µ, σ) to the contemporaneous cross-section of forecasts; use µ̂ as the center

and σ̂, ν̂ for the half-width.

• TS-tW : fit tν(µ, σ) on the last W months of median-forecast errors; center at fmed
t + µ̂

with half-width from σ̂, ν̂; W ∈ {12, 24, 36, 60, 120}.

Calibration is summarized by empirical coverage at each L and by the mean-absolute gap

(MAG) between empirical and nominal coverages (smaller is better).
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Table 3: Empirical coverage versus nominal targets for Student-t bands centerd at µ̂.

The final column reports the mean-absolute gap (MAG).

Method 50% 60% 70% 80% 90% 95% MAG

Full-TS-t 120m 0.425 0.534 0.623 0.733 0.822 0.918 0.066

Full-TS-t 12m 0.449 0.547 0.657 0.728 0.862 0.921 0.047

Full-TS-t 24m 0.475 0.566 0.674 0.748 0.893 0.942 0.025

Full-TS-t 36m 0.470 0.565 0.643 0.770 0.887 0.943 0.029

Full-TS-t 60m 0.427 0.539 0.670 0.733 0.888 0.937 0.043

Full-XS-t 0.233 0.289 0.368 0.425 0.496 0.586 0.342

Table 3 reports results on the full panel.

• Cross-section alone under-covers materially. Full-XS-t delivers 0.586 empirical cov-

erage at the 95% band and 0.233 at the 50% band, yielding a large MAG of 0.342. The

shortfall is broad-based across all levels, indicating that disagreement snapshots do not

by themselves encode a stable predictive density.

• Rolling time-series fits calibrate well, with a clear sweet spot at 24 months. Full-TS-

t24m attains the lowest MAG (0.025) and tracks targets closely across the grid (e.g.,

95% → 0.942, 90% → 0.893, 50% → 0.475). Windows that are too short (12m, MAG

= 0.047) are overly reactive, while very long windows (60–120m, MAG = 0.043–0.066)

are sluggish and under-adjust through regime shifts. The 36m window is competitive

(MAG = 0.029) but marginally less aligned than 24m.

Implications

1. Spread is informative but not sufficient. The XS-t experiment shows that using the

cross-section to construct intervals leads to systematic under-coverage. We therefore

do not build bands directly from the cross-section.

2. Adopt a 24-month rolling window as the baseline interval engine. The 24-month win-

dow provides the best accuracy–stability trade-off for NFP. It also provides more dy-

namic adjustment to time-varying volatility relative to longer rolling windows. Thus,

we deploy a 24-month rolling window for prediction band estimation for all methods
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across our distributional engines.

3. Use spread only as a modifier. Given its directional signal in extremes, we incorporate

cross-sectional disagreement as a crisis multiplier applied to the well-calibrated TS-

t24m bands rather than as a stand-alone density.

4 Methods

In this section, we present an overview of our forecasting models, including ensemble

methods and distributional engines tailored for macroeconomic time series.

4.1 Point and Directional Forecasts

Contiguity filter. All point–forecast engines in this study apply a contiguity filter to

the economist panel before constructing weights or aggregating forecasts. The filter re-

quires that an economist must have submitted non–missing forecasts for each of the W

most recent releases in the chosen look–back window to be eligible for inclusion. This

rule serves two purposes. First, it screens out sporadic forecasters whose intermittent

submissions can inject high–variance noise into the aggregation, especially if they hap-

pen to be correct in a single outlier month and are overweighted by naive inverse–error

schemes. Second, it stabilizes the composition of the forecast pool, ensuring that perfor-

mance statistics used for weighting (e.g., mean squared error, log–likelihood) are based

on comparable forecast histories rather than irregular or incomplete records. In practice,

the contiguity filter reduces weight volatility and anchors aggregation to forecasters with

demonstrated consistency.
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Figure 5: Active Economists per Release Date with Applied Contiguity Filters

The contiguity filter is capped at 12 months to preserve a sufficient number of forecasters

in each cross-sectional sample across the full backtesting horizon.

Stratified Regimes. To gauge robustness of our point and directional forecasts, we

evaluate point and directional accuracy within six macro regimes. Cut dates are anchored

to known breaks and to visible shifts in loss variance and forecast disagreement (see

Fig. 1): the Global Financial Crisis (GFC) and the COVID shock serve as explicit

stress tests, while adjacent expansion phases probe stability in low-volatility backdrops.

The regimes are:

• Pre-GFC expansion: 2003-12 to 2007-12

• GFC: 2008-01 to 2009-12

• Early expansion: 2010-01 to 2014-12

• Late expansion: 2015-01 to 2019-12

• COVID shock: 2020-01 to 2022-12

• Post-COVID normalization: 2023-01 to 2025-07-03

GFC and COVID windows are where squared-error volatility and cross-sectional dis-

agreement spike, making naive weighting schemes brittle; expansions test whether gains

persist when distributions are tight and drifting slowly. These strata are used only for
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reporting and diagnostics; all models are refit in a rolling, out-of-sample protocol with

no look-ahead.

4.1.1 Static Inverse Error

Intuitively, the static inverse error forecast adopts the approach of weighing forecasters

that have been accurate in the recent months more heavily while filtering out sporadic

forecast noise with a contiguity filter. We present a more detailed and mathematical

breakdown below.

Let t index data releases and let Et(W ) ⊆ E be the set of economists who supplied

non–missing forecasts in each of the W most recent releases.

Error history. For i ∈ Et(W ) define the point forecast errors

ei,t−k = fi,t−k − yt−k, k = 1, . . . ,W,

where fi,τ is the submitted forecast and yτ is the realised print.

Weight rules (re-estimated each t)

si,t =



1 Equal weight(
MAEi,t +λ

)−1
Inverse absolute error(

MSEi,t +λ
)−1

Inverse squared error

with MAEi,t = W−1
∑W

k=1|ei,t−k|, MSEi,t = W−1
∑W

k=1 e
2
i,t−k, and λ = 10−6. Normalized

weights are wi,t = si,t/
∑

j∈Et(W ) sj,t. The lambda term is supplied for numerical stability.

Smart consensus forecast

ŷsmart
t =

∑
i∈Et(W )

wi,t fi,t.

The procedure is repeated across W ∈ {3, 6, 12} and all weighting rules, yielding a spec-

ification grid evaluated walk-forward out-of-sample.
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4.1.2 Exponentially Weighted Moving Average (EWMA)

EWMA adapts forecaster weights in real time by decaying the influence of older forecast

errors. Relative to the static inverse–error scheme, the procedure introduces a temporal

decay hyperparameter that emphasizes recent performance.

Temporal decay. Fix a rolling window length W ∈ {3, 6, 12} (months) and a decay

factor ρ ∈ {0.75, 0.80, . . . , 0.95}. Define

ψk(ρ,W ) =
ρW−k∑W
ℓ=1 ρ

W−ℓ
, k = 1, . . . ,W,

so that ψ1 applies to the most-recent error and
∑

k ψk = 1. As ρ→1 the weights flatten,

recovering the static window as a limiting case.

Error aggregation. For economist i with a complete W -month history let ei,t−k =

fi,t−k − yt−k denote the k-step-old error. EWMA forms an exponentially weighted score

S
(g)
i,t =

W∑
k=1

ψk(ρ,W ) g
(
ei,t−k

)
, g(x) ∈ { |x|, x2 },

corresponding to mean-absolute or mean-squared loss.

Weight rules. With a numerical ridge λ = 10−6 the raw scores are converted to weights

si,t =



1, Equal weight,(
S
(|·|)
i,t + λ

)−1
, Inverse-MAE,(

S
(·2)
i,t + λ

)−1
, Inverse-MSE,

wi,t =
si,t∑

j∈Et(W ) sj,t
.

Smart consensus forecast. The EWMA point prediction for release t is then

ŷEWMA
t =

∑
i∈Et(W )

wi,t fi,t,

where Et(W ) is the set of economists with non-missing submissions in all W look-back

months.
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Hyperparameter tuning. A walk-forward grid search traverses ρ ∈ {0.75, 0.80, . . . , 0.95}

for each window W ∈ {3, 6, 12} and weighting rule; each (W, ρ, rule) defines a distinct

specification.

4.1.3 Soft Bayesian Model Averaging (soft-BMA)

soft-BMA builds a heavy-tailed likelihood for each economist’s recent errors and converts

the resulting log-evidence into a soft-max weight. While it stops short of full BMA,

using rolling-window plug-in likelihoods rather than posterior model probabilities (hence

soft-BMA), the procedure retains the Bayesian spirit of BMA while allowing weights to

evolve smoothly with incoming data.

1. Construct an error panel: Fix a look-back horizon W months and degrees-of-

freedom parameter ν. For each active economist i collect the centerd forecast errors

ei,t−k = fi,t−k − yt−k, k = 1, . . . ,W.

2. Fit Student-t error models: Estimate the scale σ̂i,t =
√

1
W−1

∑
k e

2
i,t−k and compute

the cumulative log-likelihood

ℓi,t(ν) =
W∑
k=1

log tν
(
ei,t−k; 0, σ̂i,t

)
,

where tν(·; 0, σ) denotes the Student-t density with ν degrees of freedom, zero mean,

and scale σ.

3. Convert evidence to weights (soft-max): Define wi,t =
exp

{
ℓi,t(ν)

}∑
j∈Et(W ) exp

{
ℓj,t(ν)

} ,
thereby favouring economists whose recent errors are more probable under their own

Student-t fit.

4. Form the crowd forecast: Align the weight vector with current submissions and

predict

ŷsoft-BMA
t =

∑
i∈Et(W )

wi,t fi,t,

alongside the directional flag 1{ŷsoft-BMA
t > mediant}.

5. Hyperparameter grid: A walk-forward search spans W ∈ {3, 6, 12} and ν ∈

{3, 5, 10, 25}, generating an out-of-sample record per (W, ν) specification.
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The soft-BMA procedure was selected as a result of initial data exploration observing the

distributional pattern of median forecast errors (3.2). It generalizes static inverse-error

weighting by translating likelihoods—not point errors—into weights, thereby accommo-

dating heteroskedasticity and fat-tailed periods. Unlike MWU, which multiplicatively

aggregates all past errors, soft-BMA restricts memory to a finite window but modulates

the influence of extreme observations through the Student-t tail parameter ν.

4.1.4 Multiplicative Weights Update (MWU)

MWU is an online learning algorithm that treats each economist as an expert and adap-

tively reallocates probability mass toward forecasters that minimize squared error in real

time. We adapt the classical scheme with a persistent global expert pool, probation and

drop rules, sleep–tracking, and projection onto a capped simplex to reflect operational

realities.

1. Persistent global pool and probation: The algorithm maintains a single global

pool of experts across the full sample. An economist is eligible to enter the pool only

after passing a 12-month contiguity screen (i.e. uninterrupted forecasts for the prior

12 releases). Entry is triggered the month after the probation window completes.

2. Newcomer allocation and incumbents: New entrants receive a fixed newcomer

share αnew = 0.10 split equally among them, with incumbent weights scaled down

proportionally to preserve the unit sum. All weights are projected onto the capped

simplex {wi ∈ [ωmin, ωmax],
∑

iwi = 1} with ωmax = 0.50 and ωmin = 10−3.

3. Forecast construction: For release t, let At denote experts with a live submis-

sion and no more than Smax = 2 consecutive misses. If |At| ≥ 10 (minimum active

experts), we re-project the active sub-portfolio to the capped simplex and form the

smart consensus

ŷMWU
t =

∑
i∈At

wi,tfi,t.

A directional signal 1{ŷMWU
t > mediant} is logged for evaluation. Active-month

weights (post-projection) are snapshotted for later diagnostics.

4. Loss evaluation and multiplicative update: Upon realisation of yt, penalised

squared-error losses ℓi,t = (fi,t − yt)
2 + λ with λ = 10−6 are computed for active
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experts, and weights updated via

wi,t+1 ∝ wi,t exp(−η ℓi,t), η ∈ [0.001, 0.020].

The global pool is then re-projected to the capped simplex to enforce bounds and unit

sum.

5. Sleep and expulsion logic: Absences increment a sleep counter ci,t, reset on sub-

mission. Experts are permanently dropped if they exceed Smax = 2 consecutive misses

or accumulate more than Mmax = 6 misses in any rolling 12-month window.

6. Hyperparameter grid and evaluation: A walk-forward grid over η is run sep-

arately on COVID-only and full-history panels. Out-of-sample diagnostics include

RMSE, hit rate, Binomial and Pesaran–Timmermann p–values, and Diebold–Mariano

tests, with regime-wise breakdowns to gauge robustness.

MWU differs from static inverse-error and EWMA schemes by compounding past losses

multiplicatively, yielding a long-memory weight vector that adapts smoothly over time.

Relative to soft-BMA, MWU operates in expert space rather than error-likelihood space,

providing a complementary blend of adaptivity and interpretability, while the projection,

cap, and drop mechanisms prevent domination by any single forecaster while still allowing

the model the appropriately bias predictions toward recent winners among the expert

pool.

4.1.5 Robust Ensemble for Directional Forecasting

Motivation. Ensemble methods are a standard remedy for model fragility. Take for

example the case study of decision tree learning algorithms in machine learning. A

single decision tree can be highly sensitive to minor perturbations in the training data;

aggregating many trees (bagging, random forests) reduces correlation across errors and

yields a predictor that is both lower variance and more stable to small changes. We adopt

the same logic for macro forecast combination: instead of committing to one “best”

specification, we average a small, diverse set of top performers so that idiosyncratic

misspecification risk washes out while common signal is amplified.
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Candidate pool (robust winner / HR / RMSE). For each base model we form a

compact pool of specifications using out-of-sample (OOS) diagnostics on the full panel:

(i) the RMSE winner (lowest OOS RMSE vs. the crowd median), (ii) the Hit-Rate win-

ner (highest directional hit rate relative to the median), and (iii) a robust winner defined

as the lowest-RMSE spec among those that simultaneously pass directional robustness

screens (Diebold–Mariano p < 0.10 and Pesaran–Timmermann p < 0.10). Pool mem-

bers must have live OOS histories. From this pool we build small directional forecast

ensembles.

Ensemble construction. At release t, let ŷ
(j)
t denote the OOS smart forecast from

pool member j ∈ J , with consensus median fmed
t . For a given ensemble S ⊂ J of

size k (we consider k ∈ {3, 5}), the ensemble directional forecast is produced by a strict

majority vote relative to the median:

d̂enst = 1

{∑
j∈S

1{ŷ(j)t > fmed
t } > k

2

}
,

so the ensemble calls a beat when strictly more than half of the members sit above the

median; it calls a miss otherwise.

Four horizon-anchored signals. To balance stability and adaptivity, we compute

four horizon-anchored ensemble signals by re-evaluating candidate combinations on pro-

gressively shorter realized windows that end at the last observed print:

W ∈ {Full history, last 12 months, last 6 months, last 3 months}.

For each window W , we:

1. restrict each member’s OOS series to W ;

2. enumerate all k-member combinations from the pool;

3. select the combination S⋆
W that maximizes directional hit rate over W (primary crite-

rion);

4. report the ensemble’s RMSE vs. the median, the exact binomial p–value for hit rate

(null = 50%), the Pesaran–Timmermann p–value to adjust for base-rate effects, and

18



Verition Fund Management

an AC score

AC =
(
1− ĤR

)
+ λσblocks(ĤR),

where σblocks is the standard deviation of block-level hit rates across regimes. Lower

AC indicates better accuracy and stability.

This yields four parallel signals—EnsFull,Ens12m,Ens6m,Ens3m—each optimized for its

lookback.

Comparing signal horizons. The Full-history signal is the most stable and is pre-

ferred when the process is stationary and structural breaks are unlikely. The 12-month

signal offers a balanced bias–variance trade-off and typically tracks evolving seasonals

and slow-moving shifts without overreacting. The 6-month signal is more reactive and

can surface regime changes sooner at the cost of higher variance. The 3-month signal is

the most adaptive but also the noisiest; it is informative as an early-warning overlay, not

as a sole driver. In practice, we publish all four; downstream users can privilege stability

or dynamic reactivity as the trading context requires. We recommend defaulting to the

6-month signal for most purposes as it delivers the highest historical hit rate.

4.2 Distributional Engines

Accurate point estimates alone are often insufficient for trading and risk management; a

full predictive density can often be useful to gauge tail risk, size positions, and price op-

tionality around macro prints. Accordingly, we deploy four complementary distributional

engines: (i) a Student-t error model, (ii) a Gaussian Mixture Model (GMM) to cap-

ture latent regimes, (iii) a t-GARCH(1,1) filter for time-varying conditional volatility,

and (iv) Bayesian Model Averaging (BMA) over Normal and Student-t specifica-

tions. Each engine ingests the historical error stream of the crowd median and outputs

calibrated two-sided prediction bands for the upcoming release. We evaluate candidates

on coverage accuracy—the mean absolute gap between empirical and nominal hit rates

(i.e. for a 95% prediction band, how close historical empirical coverage is to the the-

oretical 95% nominal value)—and consistency, the variation of that gap across distinct

market regimes.
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Crisis Multiplier (shared across engines). Let st be the cross-sectional forecast

spread and s̃ the median of its trailing 24-month history. We define

mt =
(st
s̃

)βt

, βt =

0, st ≤ Pct95{st−k}24k=1,

0.80, st > Pct95{st−k}24k=1.

All interval engines below apply mt multiplicatively to their baseline half-widths (see §3.3

for motivation).

Regime construction for distributional evaluation. Unlike the point–forecast anal-

ysis, which stratifies performance into shorter macro–regimes to examine directional and

level accuracy, the distributional evaluation uses a coarser set of four long–horizon strata.

This is intentional: coverage analysis requires many realized observations to obtain sta-

ble estimates of empirical inclusion rates at each nominal level. For point/directional

evaluation we estimate a low-dimensional target (mean and sign), which stabilizes with

relatively few observations, whereas coverage assessment interrogates the full predictive

CDF—especially tail quantiles—whose binomial standard errors require materially larger

T. Partitioning too finely would produce high–variance coverage estimates and potentially

misleading inferences. The four strata are defined to be approximately equal in length

to preserve enough data within each block to assess calibration while still allowing us to

observe structural shifts.

4.2.1 Student-t Predictive Density

We model forecast errors et = fmed
t − yt with a Student-t(ν, µ, σ) distribution, estimated

each month on the most recent 24 monthly errors. Let ν̂, µ̂, σ̂ denote the maximum-

likelihood parameters for that window. In the implementation, µ̂ is ignored so that every

interval is centered directly on the median point forecast. For a nominal coverage level

L ∈ {50, 60, 70, 80, 90, 95}%, the half-width is

hL,t = t1−α/2,ν̂ σ̂ ×
(

st
median s

)β

︸ ︷︷ ︸
crisis multiplier

, α = 1− L
100
,
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where st is the cross-sectional forecast spread at t. The exponent β is set to a base value

(β = 0) unless the current spread is above the 95th percentile of its own 24-month history,

in which case we apply the crisis multiplier mt (β = 0.80) from 4.2.

Two specifications are considered: (i) no crisis adjustment, and (ii) with crisis adjust-

ment. A walk-forward evaluation on the full-sample panel selects the variant that mini-

mizes the mean-absolute coverage gap, which is then applied to the live-month forecast.

4.2.2 Gaussian Mixture Model (GMM) Predictive Density

We model forecast errors et = fmed
t − yt using a Gaussian mixture model (GMM) esti-

mated each month on the most recent 24 monthly errors. For k ∈ {1, 2, 3, 4} mixture

components, we fit a full-covariance GMM by maximum likelihood and select the number

of components that minimizes the Bayesian Information Criterion (BIC). This allows the

error distribution to flexibly capture skewness, kurtosis, and potential multi-modality in

the historical error process.

Given the fitted GMM, we simulate N = 100,000 draws {ẽ(n)}Nn=1 from the mixture. For

a nominal coverage level L ∈ {50, 60, 70, 80, 90, 95}%, the lower and upper error quantiles

are taken from the empirical simulation distribution:

qloL , q
hi
L = Quantile

(
ẽ(n),

1− L

2

)
, Quantile

(
ẽ(n), 1− 1− L

2

)
.

The corresponding prediction interval is then

[
fmed
t −mt · qhiL , fmed

t −mt · qloL
]
,

where mt is the crisis multiplier defined in 4.2.

Two specifications are considered: (i) no crisis adjustment (β = 0 always) and (ii) with

crisis adjustment as above. A walk-forward evaluation on the full-sample panel selects the

variant that minimises the mean-absolute coverage gap, which is then applied to generate

the live-month forecast intervals.
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4.2.3 t-GARCH Predictive Density

We model forecast errors et = fmed
t − yt with a constant-mean GARCH(1,1) process and

Student-t innovations, re-estimated each month on the most recent 24 monthly errors. Let

ν̂ denote the degrees-of-freedom of the Student-t innovations and σ̂ the one-step-ahead

conditional volatility from the filter. Forecast errors are rescaled by a constant factor

κ (e.g., κ = 100 to map tens of thousands to hundreds of jobs) to improve numerical

stability; outputs are transformed back to original units.

For a nominal coverage level L ∈ {50, 60, 70, 80, 90, 95}%, the half-width is

hL,t = t1−α/2,ν̂ σ̂ ×
(

st
median s

)β

︸ ︷︷ ︸
crisis multiplier

, α = 1− L
100
,

where st is the cross-sectional forecast spread at t. The exponent β is set to a base value

(β = 0) unless the current spread is above the 95th percentile of its own 24-month history,

in which case we apply the crisis multiplier from §4.2.

Centering. Prediction intervals are centered at the consensus median fmed
t (no µ-shift).

This keeps the interval engine focused on dispersion rather than level, and avoids double-

counting any bias relative to the median.

We evaluate two specifications: (i) no crisis adjustment and (ii) with crisis adjustment.

4.2.4 Bayesian Model Averaging (BMA) Predictive Density

We model forecast errors et = fmed
t − yt each month using Bayesian model averaging

(BMA) over two candidate error distributions, estimated on the most recent 24 monthly

errors. The candidates are: (i) a Normal distribution N(µ, σ2), fitted by closed-form

maximum likelihood, and (ii) a Student-t distribution tν(µ, σ), fitted by numerical max-

imum likelihood with ν > 2 constrained. The Student-t candidate allows for fat-tailed

errors in periods of elevated volatility.

Let BICk denote the Bayesian Information Criterion for model k, and BICmin = mink BICk.

We define Occam weights

wk =
exp

[
−1

2
(BICk − BICmin)

]∑
ℓ exp

[
−1

2
(BICℓ − BICmin)

] ,
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so that better-fitting models receive larger posterior weights.

We then simulate N = 100,000 synthetic errors by: 1. randomly selecting a model

according to {wk}, and 2. drawing an error from the selected distribution with its fitted

parameters.

For each nominal coverage level L ∈ {50, 60, 70, 80, 90, 95}%, the lower and upper quan-

tiles of the simulated error distribution define the empirical error bounds (qloL , q
hi
L ). Pre-

diction intervals are formed by centring these bounds on the median forecast fmed
t and

optionally applying a crisis multiplier previously defined in 4.2.

Two specifications are considered: (i) no crisis adjustment (β = 0 always) and (ii) with

crisis adjustment as above. A walk-forward evaluation on the full-sample panel selects

the variant that minimizes the mean-absolute coverage gap, which is then applied to

generate the live-month forecast intervals.

4.3 Evaluation Protocol

Formal test statements are collected in Appendix A.1; for completeness, we summarize

the operational definitions here so results can be read at a glance.

Back-test protocol: At each release t, models are refit using information available

through t−1 and then produce: a point forecast ŷt, a directional call relative to the

consensus median fmed
t , and predictive intervals at levels L ∈ {50, 60, 70, 80, 90, 95}%.

Relative tests take the consensus median as the benchmark. The result of this rolling

evaluation protocol are out-of-sample results with no lookahead bias.

(1) Point and directional evaluation

• Point loss and RMSE: Define squared loss ℓt = (ŷt−yt)2. Report RMSE =
√

1
T

∑
t ℓt

for the smart model and for the median benchmark.

• Relative accuracy (DM): Compare each model to the median using the Diebold–Mariano

test on dt = ℓmodel
t − ℓmedian

t , with Newey–West long-run variance. We report the DM

statistic and two-sided p–value; negative E[dt] favors the model.

• Directional skill: We forecast the direction of the surprise relative to the consensus

23



Verition Fund Management

median. Let the directional target be dactt = sign(yt−fmed
t ) and the model’s directional

forecast be dmod
t = sign(ŷt − fmed

t ). A hit occurs when dmod
t = dactt ̸= 0 (ties at the

median are not scored and virtually never happen). We report the hit rate ĤR =

T−1
∑

t 1{dmod
t = dactt ̸= 0}, an exact binomial p-value under a 50% null, and the

Pesaran–Timmermann statistic (with p-value) to account for base-rate effects.

• Accuracy x consistency score across regimes: To assess forecast performance

across regimes, we summarize accuracy and regime stability with

ACpoint = (1− ĤR) + λσblock,

where σblock is the standard deviation of block-level (e.g., pre-COVID / COVID / post–

COVID) hit rates and λ controls the accuracy–stability trade-off (default λ = 1.0,

equally weight accuracy and consistency). Lower is better. We also display RMSE and

DM alongside AC to keep level performance visible.

(2) Distributional (interval) evaluation

• Coverage by level. For a nominal level L, let the ex-ante interval be IL,t = [ℓL,t, uL,t].

Empirical coverage is the proportion of test releases whose realization lands inside the

band:

ĈL =
1

T

T∑
t=1

1{ℓL,t ≤ yt ≤ uL,t},

with interval endpoints treated as inclusive and any missing yt excluded from T .

• Calibration summary: Report the vector {ĈL} and the mean absolute coverage gap

MAG =
1

|L|
∑
L∈L

∣∣ĈL − L
∣∣,

where L = {50, 60, 70, 80, 90, 95}%. Smaller MAG indicates better average alignment

to targets.

• Selection score (densities). We balance calibration and regime stability with

ACdist = MAG+ λσblock,
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where σblock is the standard deviation of block-level coverage gaps across L. Lower is

better. Where applicable, we report results with and without the spread-based crisis

multiplier to verify that gating improves coverage in high-disagreement months without

degrading tranquil periods.

How to read our backtest tables (quick guide): DM< 0 with small p favours the

model over the median; higher ĤR with small binomial/PT p indicates genuine directional

skill; coverage rows close to nominal and low MAG indicate well-calibrated intervals; in

all cases, a lower AC score marks the accuracy x consistency champion once stability is

priced in.

5 Results

5.1 Point–Forecast Performance

We present primary findings from our point/directional forecast models in this section.

Full backtest results for individual methods are available at §A.2.

5.1.1 Inverse–Error

Inverse–error schemes reweight economists according to recent performance within a strict

contiguity screen. At each release t and window W ∈ {3, 6, 12}, weights are propor-

tional to inverse loss (MAE or MSE) over the last W realized months; we also test an

equal–weight baseline on the same contiguous panel. This construction is the simplest

form of adaptive ensembling: it is transparent, fast to update, and provides a clean stress

test of whether the crowd can be improved with light–touch learning.

COVID–filtered vs. full history. On the COVID–filtered panel, inverse–MSE with

a 12-month window attains the lowest RMSE and passes the Diebold–Mariano test at

conventional levels, while 6-month equal–weight delivers the highest hit rate with strong

binomial and PT support. When the full history is reinstated, equal–weight with a 6-

month window jointly attains the lowest RMSE and the highest hit rate; however, DM

evidence weakens as the COVID spikes inflate loss variance, eroding level advantages

even when directional calls remain above 55%.
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Production choice and rationale. For reporting on the full sample we emphasize

the equal–weight, 6-month specification. It balances adaptivity and stability: (i) short

enough to track slow drifts in forecaster quality; (ii) long enough to avoid the noise we

observe in 3-month variants; and (iii) robust across pre-GFC, GFC, late-cycle, COVID,

and post–COVID subperiods. We retain the 12-month inverse–MSE model as a COVID-

filtered benchmark where RMSE gains are clearest.

Regime diagnostics (selected spec: Full panel, equal weight, W = 6) Table 4

summarizes performance by macro regime. Several features are notable. First, directional

accuracy is consistently above 55% in tranquil regimes and rises to nearly 80% in the

GFC, indicating that the ensemble tends to be on the right side of large moves. Second,

RMSE differences are small in pre-COVID expansions but remain in favor of the smart

consensus during COVID despite both series exploding in scale. Third, short trailing

windows illustrate the classic bias–variance trade-off: very recent slices can look excellent

(or poor) by chance; we therefore prefer the full-regime profile when judging robustness.

Table 4: Stratified diagnostics for the selected inverse–error specification on the full panel

(equal weight, W = 6). Metrics by regime: RMSE of smart and median forecasts,

directional hit rate (vs. the median), and Diebold–Mariano p–value (smart vs. median).

Regime RMSE smart RMSE median HitRate DM p

2003-12 to 2007-12 (pre-GFC) 80.074 80.345 0.551 0.670

2008-01 to 2009-12 (GFC) 73.908 76.637 0.792 0.100

2010-01 to 2014-12 (early expansion) 60.267 61.597 0.583 0.059

2015-01 to 2019-12 (late expansion) 62.551 62.883 0.550 0.395

2020-01 to 2022-12 (COVID) 1655.331 1722.868 0.611 0.284

2023-01 to 2025-07-03 (post–COVID) 91.877 93.334 0.516 0.336

Takeaways

• Keep it simple under regime uncertainty. Equal weighting across contiguous forecasters

is hard to beat in the full history, where large shocks destabilize inverse–error weights.

• Directional alpha is durable. Even when RMSE improvements blur in crisis tails, the

ensemble’s sign relative to the median remains informative and statistically supported.
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• Window length is a tuning knob, not a free lunch. Very short windows add vari-

ance; very long windows dull responsiveness. A 6–12 month horizon provides the best

bias–variance trade-off here.

5.1.2 EWMA

EWMA adds controlled recency to the inverse–error idea: within a W -month window,

older errors are exponentially down-weighted by a decay factor ρ, and the resulting scores

feed the same inverse-MAE/MSE (or equal-weight) rules. As ρ → 1, the scheme ap-

proaches the static window.

COVID–filtered panel. The sharpest level gains appear with a longer window and

slower decay: the lowest RMSE is delivered by ewma w12 d0.95 minverse mse (69.81 vs.

70.91 for the median). Directional skill is strongest for ewma w6 d0.75 mequal weight,

with a hit rate around 0.58 and statistically significant binomial and PT p–values. Taken

together, these results suggest that (i) modest recency helps, but (ii) aggressive reweight-

ing by recent squared error is not strictly necessary to achieve stable directional improve-

ments—simple equal–weighting within a 6-month window is competitive and robust.

Full panel (including COVID). Heavy–tail months erode the level advantage of

error–weighted variants. The best overall specification by both RMSE and hit rate is

ewma w6 d0.75 mequal weight (619.6 vs. 644.7 for the median; HR ≈ 0.585). Despite

the sizeable RMSE reduction, Diebold–Mariano p–values are generally not significant

on the full sample because crisis months inflate variance. The robust winner for this

panel (ewma w3 d0.75 mequal weight) reinforces the theme that light recency and small

windows can be preferable when the error process is punctuated by rare, extreme shocks.

What the regime breakdown shows. Table 5 reports regime diagnostics for the

full–panel winner by accuracy (ewma w6 d0.75 mequal weight). Relative to the crowd

median, EWMA is neutral in tranquil periods (pre-GFC, late expansion), improves in

stress (GFC, COVID) and early–recovery phases, and is roughly even post–COVID.

This pattern is consistent with EWMA’s design: it adapts enough to benefit when dis-

tributions broaden, yet remains simple enough (equal–weight, short window) to avoid

chasing transitory idiosyncrasies.
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Key takeaways.

• Directional skill persists across panels. Hit rates cluster in the mid-50s and rise

in stress regimes; PT tests confirm dependence beyond chance on the COVID panel.

• Level gains are regime-dependent. On the COVID-filtered panel, w = 12, ρ = 0.95

inverse–MSE offers the best RMSE; on the full panel, simple equal–weighting with

w = 6 dominates.

• Decay is a second-order choice. Within a given window, changing ρ from 0.75 to

0.95 nudges performance rather than overturning it. Window length (3–12 months)

and whether we use error–weights vs. equal–weights matter more.

• Operational guidance. For live use, we favor w = 6 equal–weight for directional

signaling (stable, low-variance), and w = 12, ρ = 0.95 inverse–MSE as an optional

level overlay in non-crisis regimes (COVID-filtered evidence).

Table 5: Regime diagnostics for EWMA (full panel winner by accuracy:

ewma w6 d0.75 mequal weight).

Regime RMSE smart RMSE median HitRate DM p

2003–12 to 2007–12 (pre-GFC) 80.074 80.345 0.551 0.670

2008–01 to 2009–12 (GFC) 73.908 76.637 0.792 0.100

2010–01 to 2014–12 (early expansion) 60.267 61.597 0.583 0.059

2015–01 to 2019–12 (late expansion) 62.551 62.883 0.550 0.395

2020–01 to 2022–12 (COVID) 1655.331 1722.868 0.611 0.284

2023–01 to 2025–07–03 (post–COVID) 91.877 93.334 0.516 0.336

5.1.3 soft-BMA

soft-BMA converts fit into weights by scoring each economist’s last W errors under a

Student-tν model and mapping log-likelihoods through a soft-max. Heavier tails (ν small)

damp outliers, and the weighted average of live submissions yields the point forecast.

Key patterns

• COVID-filtered panel. Twelve-month windows coupled with heavy tails dominate.

The lowest RMSE arises at W=12, ν=3 (smart 67.7 vs median 70.9), and the highest
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hit rates cluster at W=12, ν ∈ {10, 25} (HR ≈ 0.58) with small binomial and PT

p–values (p= .018–.036), and DM p= .060–.067. Three- and six-month windows are

competitive on direction but less compelling on level.

• Full panel (with COVID). Level RMSE deteriorates materially for all specs (reflect-

ing the extreme COVID miss), producing no “robust winner” under our 10% DM/PT

gate. Directional accuracy remains resilient: HRs in the 0.56–0.58 range frequently

attain exact-binomial p < 0.05 even when RMSE is worse than the median. In short,

soft-BMA carries a stable directional edge, but its level advantage is eroded by crisis-

scale errors that heavy tails alone do not neutralize.

• Role of heavy tails and window length. Moving from ν=25 toward ν=3 system-

atically helps in COVID-filtered tests (more protection against occasional large errors).

Window length matters more than ν: W=12 emerges as the most reliable horizon for

both RMSE and HR.

Selected specification and regime breakdown. For interpretability across regimes

we display theW=12, ν=3 model (it is the COVID-panel RMSE leader and the full-panel

HR leader). The table shows that soft-BMA is comparable or better than the median in

tranquil expansions, suffers a level penalty during COVID, and recovers strongly post–

COVID with borderline-significant DM in levels.

Table 6: Regime breakdown for soft bma w12 nu3 (full panel).

Regime RMSE smart RMSE median HitRate DM p

2004-06 to 2007-12 (pre-GFC) 71.137 71.584 0.581 0.759

2008-01 to 2009-12 (GFC) 77.873 76.637 0.542 0.665

2010-01 to 2014-12 (early-expansion) 60.551 61.597 0.567 0.328

2015-01 to 2019-12 (late-expansion) 62.452 62.883 0.567 0.777

2020-01 to 2022-12 (COVID) 2219.418 1722.868 0.556 0.283

2023-01 to 2025-07-03 (post–COVID) 76.355 93.334 0.645 0.066

Takeaways

• Directionally valuable. soft-BMA retains a consistent directional edge, particularly

with W=12 and small ν, even when level RMSE parity versus the median cannot be
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guaranteed in crisis periods.

• Level sensitivity to crises. Heavy tails cushion but do not neutralize COVID-scale

errors; this explains the absence of a full-panel robust winner (DM/PT p ≥ 0.10).

• Practical placement. We treat soft-BMA as a strong directional component in the ro-

bust ensemble and rely on distributional engines (with crisis multipliers) for calibrated

uncertainty in levels.

5.1.4 Multiplicative Weights Update

MWU treats each economist as an “expert” and updates weights multiplicatively with

recent loss: wi,t+1 ∝ wi,t exp(−η ℓi,t), where ℓi,t is squared-error and η is a learning rate.

Each month we form the smart forecast as the weighted average of live submissions, with

weights projected onto a capped simplex to avoid dominance.

COVID-filtered panel. Across step sizes η ∈ [0.001, 0.019], MWU consistently re-

duces level error relative to the crowd median (all entries have RMSEsmart < RMSEmedian).

The best RMSE occurs around η = 0.005, while the highest directional hit rate is at

η = 0.015. However, directional skill remains modest (HR ≈ 0.48–0.54) and neither

the exact binomial nor PT tests deliver strong significance; no configuration passes our

robustness gate (both DM and PT < 0.10).

Full panel (with COVID months). When the crisis months are included, MWU’s

level performance deteriorates: for all η, RMSEsmart > RMSEmedian. Directional accuracy

hovers near coin-flip (HR = 0.47–0.54). DM p–values frequently indicate worse squared-

error than the median at moderate/large η (e.g., η = 0.007–0.011), consistent with the

algorithm overweighting experts that themselves became unstable during the COVID

shock. Smaller η attenuates this variance but does not overturn the median.

Regime diagnostics. Table 7 reports performance for the configuration with the high-

est full-sample hit rate (η = 0.015). MWU improves upon the median pre-GFC (lower

RMSE; HR = 0.63) but underperforms in the long expansions and especially in the

post–COVID period, where the DM test flags statistically worse loss relative to the me-

dian. The pattern suggests that MWU’s compounding memory, even with our caps and
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sleep/expulsion rules, does not reweight quickly enough after large distributional breaks.

Table 7: Stratified performance for MWU (mwu eta0.015) on the full panel.

Regime RMSE smart RMSE median HitRate DM p

2004–2007 (pre-GFC) 68.747 71.584 0.628 0.422

2008–2009 (GFC) 84.079 76.637 0.542 0.493

2010–2014 (early expansion) 65.827 61.597 0.533 0.229

2015–2019 (late expansion) 67.394 62.883 0.533 0.263

2023–2025 (post–COVID) 100.989 93.334 0.419 0.004

Takeaways. (i) MWU exhibits directional persistence in tranquil periods but its level

errors are fragile to crisis-era volatility, with post–COVID degradation that is statistically

detectable. (ii) Tuning η trades off variance and adaptivity but does not produce a robust

full-sample winner under our DM/PT gate. (iii) Operationally, we therefore retain MWU

as a diversifying voter within the robust ensemble—useful for directional tie-breaks and as

a hedge against misspecified inverse-error/EWMA weights—rather than as a standalone

champion. Full backtests and winners tables appear in the Appendix.

5.1.5 Cross Point–Forecast Signal Comparison

Across the four families—Inverse–Error, EWMA, soft-BMA, and MWU—two regulari-

ties anchor the evidence. First, directional skill persists: hit rates reliably sit in the

mid-50s and strengthen in stress regimes (e.g., GFC), indicating that all families tend to

get the sign right relative to the consensus median and have demonstrated edge. Sec-

ond, level RMSE gains are regime-dependent: once COVID months are included,

Diebold–Mariano evidence weakens and level advantages become fragile because variance

explodes.

Family-wise patterns

• Inverse–Error. Simple specs dominate in unstable regimes. Equal-weight with a

6-month window delivers the most consistent full-sample profile (stable hit rates, no

overreaction to regime breaks). Error-weighted variants (inverse-MSE/MAE) look best
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on the COVID-filtered panel—especially at 12 months—where tails are muted and past

accuracy is more informative.

• EWMA. Light recency helps without being essential. On the full sample, equal-weight

with a short window (6 months) again leads on both RMSE and hit rate; within the

COVID-filtered panel, a longer window (12 months) with slow decay and inverse-MSE

attains the cleanest level gains. Changing the decay factor moves the needle modestly

relative to window length and the choice between equal vs. error weights.

• soft-BMA. Heavy-tailed likelihoods convert recent fit into soft weights, yielding a

durable directional edge (often statistically supported) with a 12-month window and

small ν. However, crisis-scale errors erode level RMSE on the full sample; heavy tails

cushion but do not neutralize COVID outliers.

• MWU. The long-memory multiplicative update adapts quickly in principle, but in our

macro panel it is most sensitive to distributional breaks. It can post good pre-GFC di-

rection but loses level footing in long expansions and post–COVID, where compounding

can overweight stale “winners.”

Regime view. In the GFC, equal-weight variants of Inverse–Error/EWMA show the

largest directional lift (HR approaching 0.8 for some slices), consistent with diversified vot-

ing when individual experts wobble. In tranquil expansions, all families hover near modest

positive direction with small RMSE differences versus the median. During COVID, every

method’s level error inflates; equal-weight short-window designs are least fragile, soft-

BMA retains sign information, and MWU degrades the most. Post–COVID, soft-BMA

and the simple averages recover directionally, while level metrics converge toward the

median with only small separations.

Implications for production There is no single always-best champion. Instead, a

cluster of simple, short-horizon averages (6-month equal-weight across Inverse–Error/EWMA)

delivers the best accuracy–stability trade-off on the full history; soft-BMA contributes a

complementary directional signal; MWU acts as a diversifying voter rather than a stan-

dalone leader. These findings motivate the robust ensemble in the next section: rather

than commit to any single learner, we aggregate a small set of top, regime-complementary

specifications and score them by Accuracy×Consistency, producing a single, resilient sig-
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nal that inherits the strengths and hedges the weaknesses of its constituents.

Economist Weights as an Analysis Tool. Beyond aggregate performance metrics,

an additional diagnostic tool is to inspect the individual economists that each model

is most heavily weighting at the latest forecast snapshot. For each model family, we

aggregate weights across all live specifications and panels, normalize them to sum to

one, and rank economists by their resulting model-specific weights. We then form an

equal-model blend (25% weight per family) to identify the overall top contributors to the

current month’s point-forecast signal. This ranking is informative in two complementary

scenarios: first, when the ensemble is performing well, a “hot” economist appearing near

the top across multiple families can offer qualitative insight into the directional bias or

level call driving the model; second, when model performance deteriorates, the list can

be checked for overweighted economists with a history of underperformance, prompting

targeted review or temporary down-weighting. The full ranked tables for the August 2025

NFP print are reported in Appendix A.3, providing transparency into the composition

of the live forecast signal.

5.2 Robust Ensemble Performance

5.2.1 In–Sample Search Results

Our in–sample search combines candidate specifications drawn from the point–forecast

families in §4.1 by selecting, for each model and panel, the lowest–RMSE specification,

the highest–hit–rate specification, and any “robust” winner (both Diebold–Mariano and

Pesaran–Timmermann p < 0.10). This naturally produces a small, high–quality pool. We

then exhaustively evaluate all k ∈ {3, 5}–member combinations under different evaluation

windows: the full history, trailing 12, 6, and 3 months. Combinations are scored by hit

rate (direction vs. median), with the Accuracy×Consistency (AC) score serving as a

tie–breaker.

Table 8 reports stratified diagnostics for the best k in each window, excluding trailing

windows from the breakdown. The FULL–window winner (k=5) achieves a 58.7% hit

rate over 218 months with strong exact–binomial and PT significance (p < 0.02), and

an AC–score of 0.48, reflecting both accuracy and stability. Performance is strongest
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in the GFC (hit rate ≈ 0.71) and early expansions, with robust gains over the median

in COVID and post–COVID periods. The T12M and T6M winners produce exactly

50% hit rates in their respective short windows, unsurprising given the small sample sizes,

and their stratified profiles indicate mixed performance across regimes. The T3M winner

reaches 66.7% in its narrow evaluation band, but with only three observations, offering

little statistical reliability.
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Table 8: Stratified performance for in–sample robust ensembles (best k per window).

Trailing windows omitted.

Window Spec ID Regime HitRate Binom p PT p AC λ=1.0

FULL F1 pre-GFC 0.558 0.542 0.432 0.477

GFC 0.708 0.064 0.054

early-expansion 0.600 0.155 0.121

late-expansion 0.550 0.519 0.405

COVID 0.581 0.473 0.283

post–COVID 0.542 0.839 0.562

T12M T12–1 pre-GFC 0.558 0.542 0.432 0.540

GFC 0.583 0.541 0.728

early-expansion 0.550 0.519 0.466

late-expansion 0.583 0.245 0.165

COVID 0.528 0.868 0.877

post–COVID 0.645 0.150 0.796

T6M T6–1 pre-GFC 0.512 1.000 0.807 0.594

GFC 0.750 0.023 0.015

early-expansion 0.600 0.155 0.121

late-expansion 0.567 0.366 0.273

COVID 0.611 0.243 0.196

post–COVID 0.484 1.000 0.959

T3M T3–1 pre-GFC 0.512 1.000 0.807 0.427

GFC 0.750 0.023 0.015

early-expansion 0.600 0.155 0.121

late-expansion 0.567 0.366 0.273

COVID 0.611 0.243 0.196

post–COVID 0.484 1.000 0.959

Spec Legend: F1 = (ewma w6 d0.75 mequal weight, inv err w12 minverse mse,

inv err w6 mequal weight, mwu eta0.001, soft bma w12 nu10)

T12–1 = (ewma w12 d0.95 minverse mse, soft bma w12 nu10, soft bma w12 nu3)

T6–1 = (ewma w12 d0.95 minverse mse, ewma w3 d0.75 mequal weight,

ewma w6 d0.75 mequal weight)

T3–1 = (ewma w12 d0.95 minverse mse, ewma w3 d0.75 mequal weight,

ewma w6 d0.75 mequal weight)
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Overall, the in–sample results confirm that blending diverse model families delivers a

persistent directional edge, especially in stress regimes (GFC, COVID) and early recover-

ies. However, shorter evaluation windows (T3M, T6M) are inherently more volatile, with

wide swings in hit rates that reflect small–n sensitivity rather than genuine robustness.

The FULL–history k = 5 blend remains the most compelling candidate for live deploy-

ment from an in–sample perspective unless one has a strong reason to favor the dynamic

nature of shorter-horizon signals.

5.2.2 Dynamic Evaluation

The in–sample procedure above benefits from a look–ahead bias: ensemble specifications

are chosen using the full history, then evaluated on that same history. To assess true

live–feasibility, we re–run the selection process in a rolling, time–anchored fashion. At

each month t, only data available up to t− 1 are used to (i) identify the candidate pool,

(ii) select the best k–spec ensemble for each evaluation horizon (T3, T6, T12), and (iii)

generate a directional signal for t. This produces an honest out–of–sample sequence of

predictions.

We compare these dynamic ensembles to a baseline computed as the average of individual

economist hit rates within each regime, where each economist’s hit rate is calculated

relative to the consensus median direction. This baseline captures the intrinsic “signal

strength” of the economist panel without any ensembling.

Table 9 reports stratified diagnostics for each dynamic ensemble and the baseline, exclud-

ing trailing windows. All three dynamic horizons substantially outperform the baseline’s

overall hit rate (49.3%) in both accuracy and AC–score, with T6 achieving the highest

overall hit rate (57.6%) and best AC (0.477). Performance is particularly strong in the

GFC and post–COVID recovery, with T12 also excelling early expansion. T3, while com-

petitive on average, shows greater variability, confirming that very short windows tend to

overfit transient patterns. This, however, can prove to be valuable in times of unusually

high volatility.
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Table 9: Stratified diagnostics for dynamic robust ensembles and baseline.

Regime T3 HitRate T6 HitRate T12 HitRate Baseline HitRate

2004–2007 (pre-GFC) 0.500 0.475 0.525 0.516

2008–2009 (GFC) 0.667 0.625 0.583 0.526

2010–2014 (early-expansion) 0.567 0.600 0.600 0.497

2015–2019 (late-expansion) 0.583 0.583 0.567 0.469

2020–2022 (COVID) 0.639 0.600 0.560 0.499

2023–2025 (post–COVID) 0.516 0.581 0.452 0.475

Figure 6 plots the rolling hit rates for each horizon’s winning ensemble over the evaluation

period. T3 is visibly the noisiest series, with sharp month–to–month swings reflecting

its susceptibility to small–sample variance. T6 is more stable, with smoother transitions

and fewer abrupt reversals, while T12 offers the most consistent profile over long regimes

but reacts more slowly to regime shifts. These patterns align with the AC–scores: T6’s

combination of high mean accuracy and low volatility makes it the most balanced per-

former, while T3 is better suited for opportunistic, high–beta directional calls, and T12

for slow–moving macro backdrops.

Figure 6: Rolling hit rate of the winning dynamic majority–vote ensemble for each hori-

zon. The dashed line denotes the 50% no–skill level.

In sum, the dynamic evaluation confirms that the robust–ensemble framework materially

improves on the baseline consensus direction, with the T6 ensemble offering the most

attractive balance of accuracy and consistency for live deployment.
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5.3 Distributional Performance

Methods and interval–construction differences. We evaluate four interval–forecasting

engines:

• Student–t : Fits a rolling 24–month Student–t error distribution to the residuals of

the point forecast. Crisis–adjusted variants scale intervals in high–volatility regimes.

• GARCH(1,1)–t: Models conditional volatility dynamics directly from residuals via

a GARCH(1,1) process with t–distributed innovations, optionally applying crisis mul-

tipliers.

• Gaussian Mixture (GMM): Fits a two–component Gaussian mixture to the rolling

24–month residual set, with or without crisis scaling. Captures multi–modal error

structures.

• Bayesian Model Averaging (BMA): Averages predictive distributions from can-

didate engines weighted by recent likelihood, allowing for heavy–tailed members. The

best–performing BMA variant here is without crisis adjustment.

These approaches differ in how they capture distributional shape (single–parametric tail

vs. mixture), dynamics (static rolling fit vs. conditional volatility), and crisis–period

scaling.

Summary of back–test results. Table 10 consolidates the best–performing variant

of each family on the Full panel by mean absolute coverage gap (AvgAbsGap) and Ac-

curacy–Consistency score (AC–Score, lower is better).

Table 10: Best–performing distributional models on the Full panel.

Method Best Tag AvgAbsGap AC–Score

Gaussian–Mixture Roll24 CrisisAdj 0.0114 0.0173

Student–t Roll24 CrisisAdj 0.0116 0.0221

BMA Roll24 NoAdj 0.0101 0.0371

GARCH(1,1)–t GARCH CrisisAdj 0.0189 0.082

Detailed observations by method.
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Gaussian–Mixture. Crisis–adjusted GMM achieves the lowest AC–Score (0.0173) and

the second–lowest AvgAbsGap (0.0114). Coverage is stable across strata, with only

mild over–coverage in the most volatile blocks. The mixture form appears to capture

asymmetric tail risks without producing excessive width in tranquil periods.

Student–t. Crisis–adjusted Student–t matches GMM in AvgAbsGap (0.0116) and per-

forms slightly worse in AC–Score (0.0221). Its parametric simplicity yields well–behaved

intervals, though tails are somewhat too narrow in post–COVID volatility, even with

crisis multipliers.

BMA. The best–performing BMA variant is without crisis adjustment, yielding the

lowest AvgAbsGap overall (0.0101) but a weaker AC–Score (0.0371). This reflects pe-

riods of excellent calibration offset by sharp degradation in specific regimes (notably

2015–2020), which inflates the consistency penalty.

GARCH(1,1)–t. While GARCH with crisis adjustment improves on its unadjusted

counterpart in both AvgAbsGap and AC–Score, it remains the weakest performer overall

(0.0189, 0.082). Its intervals are noticeably tighter than other engines, which aids in

certain low–volatility phases but produces under–coverage in expansionary periods and

post–COVID.

Regime–level patterns. Across methods, crisis–adjusted variants tend to improve

calibration in the COVID block but can slightly overshoot in earlier periods. The

BMA no–adj variant, while leading on average gap, shows significant regime depen-

dence—excellent in blocks 2 and 4, weaker in block 3—suggesting sensitivity to shifts in

the underlying point–forecast error process. GMM maintains the most even performance

across all blocks, while Student–t is nearly as stable but more prone to under–coverage

in extreme volatility. GARCH displays the strongest regime dependence, benefiting from

its dynamic volatility adaptation in short–lived stress but struggling to match nominal

targets in sustained expansions.

For NFP interval forecasting, Gaussian Mixture with crisis adjustment emerges as the

most reliable all–rounder—its combination of low AvgAbsGap and the best AC–Score

indicates both accurate calibration and stability across regimes. Student–t is a close
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second, offering a simpler alternative with competitive coverage. BMA is valuable when

the goal is to minimize average gap, but its regime sensitivity suggests complementing

it with a more stable engine in production. GARCH provides the tightest intervals and

fastest adaptation but at a calibration cost, making it better suited for risk–seeking or

directional–trading contexts rather than probability–calibrated forecasting. These find-

ings indicate no single engine dominates all objectives; a composite or regime–switching

approach could leverage each method’s strengths.

5.3.1 Interpreting Multiple Densities

When the live forecasting system produces multiple competing predictive densities for

the same NFP release—for example, from Gaussian–Mixture, Student–t, BMA, and

GARCH(1,1)–t models—it is important to interpret them in light of their historical per-

formance characteristics and methodological strengths.

1. Start with historical calibration metrics. The most direct way to assess which

density to lean on is through its empirical–coverage record:

• AvgAbsGap: Lower values indicate that nominal coverage levels match realised fre-

quencies more closely; this speaks to calibration.

• AC–Score: Balances calibration accuracy with stability across regimes. A low AC–Score

signals both good fit and robustness.

For NFP, the Gaussian–Mixture and Student–t engines have the tightest calibration

(AvgAbsGap ≈ 0.011–0.012) and strongest AC–Scores. This implies that, all else equal,

their interval widths and shapes are most trustworthy as direct probabilistic statements.

2. Recognise regime–specific strengths. Some engines have profiles that vary

meaningfully by macro regime:

• Gaussian–Mixture: Most stable across blocks; particularly strong in early and late

expansions.

• Student–t : Heavy tails can better accommodate crisis–era outliers; tends to produce

wider central intervals in volatile conditions.
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• BMA: When not crisis–adjusted, can be the most sharply calibrated overall (lowest

AvgAbsGap), but with more variability across regimes.

• GARCH: Narrower bands in calm periods; most reactive to volatility spikes; suitable

when market–implied vol is a key conditioning input.

In practice, if the upcoming release is in a regime with elevated macro uncertainty (e.g.,

post–shock recovery), it is prudent to weigh Student–t or crisis–adjusted variants more

heavily.

3. Examine shape and tail behaviour. Even for equally well–calibrated methods,

the tails can differ markedly:

• Gaussian–Mixture: Can produce asymmetric or multi–modal densities if component

means diverge, reflecting genuine disagreement in the expert pool.

• Student–t and BMA: Heavier tails; interpret tail quantiles as more generous al-

lowances for extreme surprises.

• GARCH: Often produces the narrowest tail estimates in calm regimes, but may over-

shoot in crisis–adjusted form.

If decision–making is tail–sensitive, heavier–tailed densities deserve greater weight.

4. Avoid over–reliance on a single engine. No single method dominates all metrics

in all regimes. A prudent approach is:

1. Identify the historically most reliable density by AC–Score.

2. Adjust subjective weight based on current regime characteristics.

3. Cross–check agreement in central coverage bands (e.g., 50–70%) across engines.

4. Investigate outliers in tail probabilities; if one method diverges sharply without regime

justification, treat with caution.

5. Operational guidance for NFP.

• Baseline: Gaussian–Mixture (Roll24 CrisisAdj) for primary probabilistic guidance;

it has the best AC–Score and stable calibration. Use student-t as a fallback.
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• Sharpest bands: Use BMA (Roll24 NoAdj) if calibrated tightness is preferred in

calm regimes, but cross–check against heavier–tailed alternatives.

• Vol–responsive overlay: Use GARCH(1,1)–t (CrisisAdj) when market–implied

volatility or recent macro releases suggest rapidly changing risk.

In live use, we recommend reporting a range of intervals from two complementary engines,

allowing the user to internalize both the central tendency and the plausible extremes.

6 Conclusion

Our unified forecasting framework demonstrates that even in a high–volatility, regime–shifting

environment such as U.S. Nonfarm Payrolls, carefully designed ensemble methods can

deliver a persistent directional edge over the crowd median and produce well–calibrated

probabilistic forecasts. On the point–forecast side, simple, short–horizon equal–weight

averages across contiguous forecasters—particularly 6–month equal–weight variants from

the inverse–error and EWMA families—provide the most stable accuracy–consistency

trade–off on the full history, while soft–BMA adds complementary directional strength

in calmer regimes. Multiplicative–weights updates contribute as a diversifying voter but

are not stand–alone leaders under our robustness criteria. On the distributional side, the

Gaussian–Mixture model with crisis adjustment emerges as the most reliable all–rounder

for interval calibration, followed closely by crisis–adjusted Student–t. BMA delivers the

smallest average coverage gap but with greater regime sensitivity, while GARCH’s adap-

tivity comes at the cost of under–coverage in long expansions.

Operational Guidance

• Directional-signal baseline: Use the T6 robust ensemble as default; T3 (reactive over-

lay) and T12 (stable backdrop) as context-dependent complements.

• Density publication: Primary = Gaussian–Mixture (Roll24, crisis-adjusted); secondary

cross-check = Student–t (Roll24, crisis-adjusted). Tail-sensitive decisions can upweight

heavier-tailed engines; calm-market options work may prefer the tighter BMA bands

(cross-check stability first).

• Regime awareness: Use stratified diagnostics to match the current environment to
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historical blocks where specific specs excelled.

Generalizability Roadmap

Although our empirical evaluation is anchored to NFP, the pipeline is designed to be

indicator–agnostic. Extending the framework involves:

1. Schema harmonization: Ingest and standardize historical forecast vintages for the

target indicator (e.g., CPI, Retail Sales, ISM).

2. Error–process characterization: Replicate exploratory diagnostics (distribution fit,

spread–error elasticity) to select appropriate distributional families and crisis–gating

logic.

3. Model re–tuning: Re–run walk–forward hyperparameter searches for point–forecast

learners to accommodate indicator–specific forecast dispersion and volatility patterns.

4. Density calibration: Back–test all distributional engines with indicator–specific resid-

uals to determine the best–performing primary/secondary densities and adjust crisis

multipliers after running the corresponding regressions.

5. Regime definition: Adapt macro–regime partitions to the indicator’s sensitivity

By following this process, the ensemble/density framework can be ported to a range

of macroeconomic releases, yielding a library of consistent, cross–indicator probabilistic

forecasts suitable for portfolio–level aggregation and macro–risk monitoring.

Limitations

Several constraints qualify our findings. Economist forecasts are made ex–ante using

initially released NFP figures, while evaluation uses the latest revised values; revisions

can materially alter measured errors in ways forecasters could not anticipate. In addition,

the contiguity filter stabilizes weights but excludes intermittent forecasters, potentially

biasing the panel toward established institutions.
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A Appendix

A.1 Statistical Tests and Definitions

This section provides brief definitions of the statistical tests and metrics used to evaluate

forecast performance in our pipeline.

• Root Mean Squared Error (RMSE): Measures the square root of the mean of

squared forecast errors, providing an aggregate measure of point forecast accuracy in

the same units as the target variable.

• Hit Rate (HR): The proportion of forecasts for which the predicted direction of

change (relative to the consensus median) matches the actual realised direction.

• Binomial Test: A nonparametric test of whether the observed hit rate differs sig-

nificantly from the null hypothesis of a 50% success probability. Useful for detecting

directional skill.

• Pesaran–Timmermann Test (PT): A statistical test for directional accuracy that

accounts for potential biases in the unconditional distribution of actual and predicted

directions. It tests whether forecasts and outcomes are positively dependent beyond

chance.

• Diebold–Mariano Test (DM): Compares the predictive accuracy of two competing

forecasts (here, the “smart” model vs. the consensus median) by testing whether the

mean loss differential is statistically different from zero, accounting for serial correla-

tion.

• Mean Absolute Coverage Gap (MAG): For prediction intervals, the mean absolute

deviation between empirical coverage and the nominal target coverage level, averaged

across all levels tested.

• Accuracy × Consistency Score (AC): A composite measure of performance across

regimes. For point/directional forecasts,

AC = (1− HitRate) + λ · σblock,

where σblock is the standard deviation of block-level hit rates. For distributional fore-
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casts, since Accuracy = 1−MAG,

AC = MAG+ λ · σblock,

where σblock is the standard deviation of block-level coverage gaps.

A.2 Comprehensive Backtest Results

Specification identifier convention. For compactness, each backtest entry is labeled

with a spec id that encodes the key hyperparameters of the forecast specification in a

single string. The naming convention follows the template:

{family} w{W} d{ρ} m{rule}

where:

• family denotes the model family, e.g., inv err (inverse–error), ewma (exponentially

weighted moving average), soft bma (soft Bayesian model averaging), or mwu (multi-

plicative weights update).

• w{W} is the trailing window length in months used to compute performance statistics

(e.g., w6 means a 6-month window).

• d{ρ} is the temporal decay factor for EWMA families only; it is omitted for static-

weight families (e.g., d0.85 means ρ = 0.85).

• rule specifies the weighting scheme applied to individual forecasters: equal weight,

inverse mae, or inverse mse.

• For MWU, the spec identifier instead uses {family} eta{η} where η is the learning

rate.

• For soft–BMA, the identifier takes the form soft bma w{W} nu{ν}, where ν is the fixed

degrees–of–freedom parameter in the Student–t likelihood.

Example: The specification ewma w6 d0.85 minverse mse corresponds to an exponen-

tially weighted moving average (ewma) model with a 6-month look-back window (w6), a

temporal decay factor of ρ = 0.85 (d0.85), and inverse–mean–squared–error weighting of

forecasters (minverse mse).
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A.2.1 Inverse–Error Backtests: Full Tables

This appendix reports the complete backtests for the inverse–error family across all win-

dow lengths (W ∈ {3, 6, 12}) and weighting rules (inverse–MSE, inverse–MAE, equal–weight).

We list, for each specification, the RMSE of the smart forecast and the crowd median,

directional hit rate and its exact binomial p–value, the Pesaran–Timmermann p–value

(PT p), and the Diebold–Mariano p–value (DM p). Summary “winners” for each panel are

provided below the full tables (candidate specifications for robust ensemble).

Table 11: Inverse–error backtests on the COVID–filtered panel. Abbreviations:

W=window; RMSE s=RMSE(smart); RMSE m=RMSE(median); HR=hit rate.

spec id W method RMSE s RMSE m HR Binom p PT p DM p

inv err w3 minverse mse 3 inverse mse 72.256 73.173 0.529 0.426 0.372 0.139

inv err w3 minverse mae 3 inverse mae 72.238 73.173 0.533 0.353 0.313 0.036

inv err w3 mequal weight 3 equal weight 72.316 73.173 0.555 0.111 0.095 0.008

inv err w6 minverse mse 6 inverse mse 71.746 72.955 0.571 0.038 0.029 0.020

inv err w6 minverse mae 6 inverse mae 71.865 72.955 0.558 0.095 0.075 0.013

inv err w6 mequal weight 6 equal weight 71.951 72.955 0.580 0.019 0.015 0.013

inv err w12 minverse mse 12 inverse mse 69.782 70.913 0.564 0.067 0.054 0.028

inv err w12 minverse mae 12 inverse mae 69.923 70.913 0.550 0.155 0.126 0.045

inv err w12 mequal weight 12 equal weight 70.096 70.913 0.555 0.119 0.100 0.077

Table 12: COVID–filtered panel winners (inverse–error family).

Category Specification

Lowest RMSE inv err w12 minverse mse (window = 12, method = inverse mse)

Highest HitRate inv err w6 mequal weight (window = 6, method = equal weight)

Robust Winner inv err w12 minverse mse
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Table 13: Inverse–error backtests on the full panel. Abbreviations: W=window;

RMSE s=RMSE(smart); RMSE m=RMSE(median); HR=hit rate.

spec id W method RMSE s RMSE m HR Binom p PT p DM p

inv err w3 minverse mse 3 inverse mse 664.827 641.034 0.551 0.109 0.104 0.331

inv err w3 minverse mae 3 inverse mae 641.926 641.034 0.551 0.109 0.101 0.837

inv err w3 mequal weight 3 equal weight 635.159 641.034 0.559 0.064 0.058 0.085

inv err w6 minverse mse 6 inverse mse 666.750 644.653 0.569 0.030 0.028 0.303

inv err w6 minverse mae 6 inverse mae 635.931 644.653 0.565 0.040 0.037 0.264

inv err w6 mequal weight 6 equal weight 619.565 644.653 0.585 0.008 0.007 0.283

inv err w12 minverse mse 12 inverse mse 679.432 651.933 0.571 0.028 0.027 0.368

inv err w12 minverse mae 12 inverse mae 643.409 651.933 0.559 0.069 0.068 0.111

inv err w12 mequal weight 12 equal weight 631.802 651.933 0.555 0.090 0.085 0.207

Table 14: Full panel winners (inverse–error family).

Category Specification

Lowest RMSE & Highest HitRate inv err w6 mequal weight

Robust Winner inv err w3 mequal weight

A.2.2 EWMA Backtests: Full Tables

This appendix reports the complete EWMA backtests across all window lengths W ∈

{3, 6, 12}, decay factors ρ ∈ {0.75, 0.85, 0.95}, and weighting rules (inverse–MSE, in-

verse–MAE, equal–weight). For each specification we list the RMSE of the smart forecast

and the crowd median, the directional hit rate and its exact binomial p–value, the Pe-

saran–Timmermann p–value (PT p), and the Diebold–Mariano p–value (DM p). Summary

“winners” for each panel are provided below the full tables (candidate specifications for

robust ensemble).
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Table 15: EWMA backtests on the COVID–filtered panel. Abbreviations:

RMSE s=RMSE(smart); RMSE m=RMSE(median); HR=hit rate.

spec id method RMSE s RMSE m HR Binom p PT p DM p

ewma w3 d0.75 minverse mse inverse mse 72.218 73.173 0.542 0.232 0.199 0.126

ewma w3 d0.75 minverse mae inverse mae 72.213 73.173 0.533 0.353 0.311 0.035

ewma w3 d0.75 mequal weight equal weight 72.316 73.173 0.555 0.111 0.095 0.008

ewma w3 d0.85 minverse mse inverse mse 72.236 73.173 0.537 0.288 0.246 0.132

ewma w3 d0.85 minverse mae inverse mae 72.225 73.173 0.529 0.426 0.377 0.035

ewma w3 d0.85 mequal weight equal weight 72.316 73.173 0.555 0.111 0.095 0.008

ewma w3 d0.95 minverse mse inverse mse 72.250 73.173 0.529 0.426 0.372 0.136

ewma w3 d0.95 minverse mae inverse mae 72.234 73.173 0.537 0.288 0.253 0.036

ewma w3 d0.95 mequal weight equal weight 72.316 73.173 0.555 0.111 0.095 0.008

ewma w6 d0.75 minverse mse inverse mse 71.762 72.955 0.567 0.052 0.039 0.032

ewma w6 d0.75 minverse mae inverse mae 71.866 72.955 0.549 0.160 0.135 0.021

ewma w6 d0.75 mequal weight equal weight 71.951 72.955 0.580 0.019 0.015 0.013

ewma w6 d0.85 minverse mse inverse mse 71.760 72.955 0.580 0.019 0.013 0.027

ewma w6 d0.85 minverse mae inverse mae 71.869 72.955 0.549 0.160 0.133 0.018

ewma w6 d0.85 mequal weight equal weight 71.951 72.955 0.580 0.019 0.015 0.013

ewma w6 d0.95 minverse mse inverse mse 71.752 72.955 0.576 0.027 0.019 0.022

ewma w6 d0.95 minverse mae inverse mae 71.867 72.955 0.562 0.071 0.056 0.015

ewma w6 d0.95 mequal weight equal weight 71.951 72.955 0.580 0.019 0.015 0.013

ewma w12 d0.75 minverse mse inverse mse 69.895 70.913 0.537 0.310 0.262 0.070

ewma w12 d0.75 minverse mae inverse mae 69.968 70.913 0.528 0.456 0.400 0.069

ewma w12 d0.75 mequal weight equal weight 70.096 70.913 0.555 0.119 0.100 0.077

ewma w12 d0.85 minverse mse inverse mse 69.860 70.913 0.555 0.119 0.096 0.050

ewma w12 d0.85 minverse mae inverse mae 69.953 70.913 0.537 0.310 0.265 0.059

ewma w12 d0.85 mequal weight equal weight 70.096 70.913 0.555 0.119 0.100 0.077

ewma w12 d0.95 minverse mse inverse mse 69.809 70.913 0.560 0.090 0.071 0.034

ewma w12 d0.95 minverse mae inverse mae 69.933 70.913 0.546 0.198 0.163 0.049

ewma w12 d0.95 mequal weight equal weight 70.096 70.913 0.555 0.119 0.100 0.077
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Table 16: COVID–filtered panel winners (EWMA family).

Category Specification

Lowest RMSE ewma w12 d0.95 minverse mse (window = 12, decay = 0.95, method = inverse mse)

Highest HitRate ewma w6 d0.75 mequal weight (window = 6, decay = 0.75, method = equal weight)

Robust Winner ewma w12 d0.95 minverse mse
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Table 17: EWMA backtests on the full panel. Abbreviations: RMSE s=RMSE(smart);

RMSE m=RMSE(median); HR=hit rate.

spec id method RMSE s RMSE m HR Binom p PT p DM p

ewma w3 d0.75 minverse mse inverse mse 666.253 641.034 0.563 0.048 0.045 0.329

ewma w3 d0.75 minverse mae inverse mae 643.615 641.034 0.551 0.109 0.102 0.655

ewma w3 d0.75 mequal weight equal weight 635.159 641.034 0.559 0.064 0.058 0.085

ewma w3 d0.85 minverse mse inverse mse 665.679 641.034 0.559 0.064 0.061 0.330

ewma w3 d0.85 minverse mae inverse mae 642.891 641.034 0.548 0.139 0.132 0.718

ewma w3 d0.85 mequal weight equal weight 635.159 641.034 0.559 0.064 0.058 0.085

ewma w3 d0.95 minverse mse inverse mse 665.110 641.034 0.551 0.109 0.104 0.331

ewma w3 d0.95 minverse mae inverse mae 642.233 641.034 0.555 0.084 0.078 0.794

ewma w3 d0.95 mequal weight equal weight 635.159 641.034 0.559 0.064 0.058 0.085

ewma w6 d0.75 minverse mse inverse mse 668.305 644.653 0.573 0.022 0.020 0.306

ewma w6 d0.75 minverse mae inverse mae 638.035 644.653 0.562 0.054 0.050 0.263

ewma w6 d0.75 mequal weight equal weight 619.565 644.653 0.585 0.008 0.007 0.283

ewma w6 d0.85 minverse mse inverse mse 667.697 644.653 0.585 0.008 0.007 0.304

ewma w6 d0.85 minverse mae inverse mae 637.168 644.653 0.562 0.054 0.050 0.264

ewma w6 d0.85 mequal weight equal weight 619.565 644.653 0.585 0.008 0.007 0.283

ewma w6 d0.95 minverse mse inverse mse 667.071 644.653 0.573 0.022 0.020 0.303

ewma w6 d0.95 minverse mae inverse mae 636.334 644.653 0.573 0.022 0.020 0.264

ewma w6 d0.95 mequal weight equal weight 619.565 644.653 0.585 0.008 0.007 0.283

ewma w12 d0.75 minverse mse inverse mse 683.621 651.933 0.543 0.188 0.187 0.362

ewma w12 d0.75 minverse mae inverse mae 649.546 651.933 0.531 0.347 0.347 0.541

ewma w12 d0.75 mequal weight equal weight 631.802 651.933 0.555 0.090 0.085 0.207

ewma w12 d0.85 minverse mse inverse mse 682.431 651.933 0.559 0.069 0.067 0.364

ewma w12 d0.85 minverse mae inverse mae 647.630 651.933 0.539 0.233 0.233 0.214

ewma w12 d0.85 mequal weight equal weight 631.802 651.933 0.555 0.090 0.085 0.207

ewma w12 d0.95 minverse mse inverse mse 680.687 651.933 0.567 0.038 0.037 0.366

ewma w12 d0.95 minverse mae inverse mae 645.029 651.933 0.555 0.090 0.089 0.107

ewma w12 d0.95 mequal weight equal weight 631.802 651.933 0.555 0.090 0.085 0.207
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Table 18: Full panel winners (EWMA family).

Category Specification

Lowest RMSE & Highest HitRate ewma w6 d0.75 mequal weight

Robust Winner ewma w3 d0.75 mequal weight

A.2.3 Soft-BMA Backtests: Full Tables

This appendix reports the complete soft-BMA backtests across all window lengths W ∈

{3, 6, 12} and tail parameters ν ∈ {3, 5, 10, 25}. For each specification we list the RMSE

of the smart forecast and the crowd median, the directional hit rate (HR), the exact

binomial p–value, the Pesaran–Timmermann p–value (PT p), and the Diebold–Mariano

p–value (DM p). To keep the layout compact we omit auxiliary columns; the window and

ν are encoded in spec id. Summary “winners” for each panel are provided below the

full tables.

Table 19: soft-BMA backtests on the COVID-filtered panel. Abbreviations:

RMSE s=RMSE(smart); RMSE m=RMSE(median); HR=hit rate.

spec id RMSE s RMSE m HR Binom p PT p DM p

soft bma w3 nu3 72.549 73.173 0.520 0.596 0.538 0.449

soft bma w3 nu5 72.556 73.173 0.533 0.353 0.308 0.455

soft bma w3 nu10 72.563 73.173 0.533 0.353 0.308 0.461

soft bma w3 nu25 72.569 73.173 0.524 0.507 0.449 0.466

soft bma w6 nu3 71.667 72.955 0.558 0.095 0.076 0.185

soft bma w6 nu5 71.663 72.955 0.562 0.071 0.057 0.185

soft bma w6 nu10 71.664 72.955 0.562 0.071 0.057 0.186

soft bma w6 nu25 71.668 72.955 0.562 0.071 0.057 0.188

soft bma w12 nu3 67.656 70.913 0.578 0.025 0.020 0.067

soft bma w12 nu5 67.679 70.913 0.573 0.036 0.028 0.064

soft bma w12 nu10 67.719 70.913 0.583 0.018 0.013 0.062

soft bma w12 nu25 67.771 70.913 0.583 0.018 0.014 0.060
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Table 20: COVID-filtered panel winners (soft-BMA).

Category Specification

Lowest RMSE soft bma w12 nu3 (window = 12, ν = 3)

Highest HitRate soft bma w12 nu10 (window = 12, ν = 10)

Robust Winner soft bma w12 nu3

Table 21: soft-BMA backtests on the full panel. Abbreviations: RMSE s=RMSE(smart);

RMSE m=RMSE(median); HR=hit rate.

spec id RMSE s RMSE m HR Binom p PT p DM p

soft bma w3 nu3 686.489 641.034 0.525 0.459 0.441 0.296

soft bma w3 nu5 687.010 641.034 0.536 0.267 0.255 0.295

soft bma w3 nu10 687.472 641.034 0.536 0.267 0.255 0.293

soft bma w3 nu25 687.793 641.034 0.529 0.388 0.376 0.292

soft bma w6 nu3 761.342 644.653 0.558 0.072 0.067 0.279

soft bma w6 nu5 762.128 644.653 0.558 0.072 0.067 0.278

soft bma w6 nu10 762.680 644.653 0.558 0.072 0.067 0.277

soft bma w6 nu25 762.940 644.653 0.558 0.072 0.067 0.275

soft bma w12 nu3 837.900 651.933 0.575 0.020 0.019 0.285

soft bma w12 nu5 841.044 651.933 0.567 0.038 0.036 0.284

soft bma w12 nu10 844.073 651.933 0.571 0.028 0.027 0.284

soft bma w12 nu25 846.392 651.933 0.571 0.028 0.027 0.282

Table 22: Full panel winners (soft-BMA).

Category Specification

Lowest RMSE soft bma w3 nu3

Highest HitRate soft bma w12 nu3

Robust Winner — (no specification meets the DM/PT < 0.10 gate)
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A.2.4 MWU Backtests: Full Tables

This appendix reports the complete backtests for the multiplicative weights update

(MWU) family across step sizes η ∈ {0.001, . . . , 0.019}. For each specification we list

the RMSE of the smart forecast and the crowd median, directional hit rate with exact

binomial p–value, Pesaran–Timmermann p–value (PT p), and Diebold–Mariano p–value

(DM p). Summary “winners” are provided below the full tables.

Table 23: MWU backtests on the COVID–filtered panel. Abbreviations:

RMSE s=RMSE(smart); RMSE m=RMSE(median); HR=hit rate.

spec id RMSE s RMSE m HR Binom p PT p DM p

mwu eta0.001 476.387 651.933 0.524 0.490 0.717 0.307

mwu eta0.003 595.166 651.933 0.539 0.233 0.277 0.293

mwu eta0.005 435.725 651.933 0.528 0.415 0.942 0.309

mwu eta0.007 631.401 651.933 0.488 0.754 0.469 0.284

mwu eta0.009 631.507 651.933 0.480 0.572 0.469 0.287

mwu eta0.011 435.769 651.933 0.496 0.950 0.772 0.309

mwu eta0.013 435.990 651.933 0.531 0.347 0.942 0.309

mwu eta0.015 436.015 651.933 0.543 0.188 0.828 0.309

mwu eta0.017 436.000 651.933 0.535 0.286 0.828 0.309

mwu eta0.019 436.032 651.933 0.531 0.347 0.942 0.309

Table 24: COVID–filtered panel winners (MWU family).

Category Specification

Lowest RMSE mwu eta0.005

Highest HitRate mwu eta0.015

Robust Winner None (DM p & PT p ≥ 0.10)
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Table 25: MWU backtests on the full panel. Abbreviations: RMSE s=RMSE(smart);

RMSE m=RMSE(median); HR=hit rate.

spec id RMSE s RMSE m HR Binom p PT p DM p

mwu eta0.001 72.519 70.913 0.509 0.839 0.755 0.220

mwu eta0.003 76.251 70.913 0.523 0.542 0.696 0.032

mwu eta0.005 77.652 70.913 0.500 1.000 0.348 0.003

mwu eta0.007 80.261 70.913 0.472 0.456 0.211 0.001

mwu eta0.009 79.540 70.913 0.459 0.250 0.159 0.002

mwu eta0.011 75.939 70.913 0.477 0.542 0.211 0.015

mwu eta0.013 74.683 70.913 0.523 0.542 0.532 0.070

mwu eta0.015 74.856 70.913 0.537 0.310 0.639 0.052

mwu eta0.017 74.860 70.913 0.528 0.456 0.639 0.052

mwu eta0.019 75.069 70.913 0.523 0.542 0.532 0.040

Table 26: Full panel winners (MWU family).

Category Specification

Lowest RMSE mwu eta0.001

Highest HitRate mwu eta0.015

Robust Winner None (DM p & PT p ≥ 0.10)

A.2.5 Distributional Methods: Full Tables

This appendix reports complete empirical–coverage back–tests for all distributional–forecasting

engines evaluated on the Full panel. For each method, we present empirical coverage at

nominal levels (50%, 60%, 70%, 80%, 90%, 95%), mean absolute coverage gap (AvgAbs-

Gap; lower is better), and the Accuracy–Consistency (AC) score computed across four

long–horizon strata. Crisis–adjusted (CrisisAdj) variants scale predictive intervals dur-

ing high–volatility regimes.
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Table 27: Gaussian–Mixture empirical coverage results (Full panel).

Spec 50% 60% 70% 80% 90% 95% AvgAbsGap

Roll24 CrisisAdj 0.506 0.626 0.716 0.798 0.893 0.938 0.0114

Roll24 NoAdj 0.490 0.609 0.700 0.774 0.872 0.922 0.0170

Gaussian–Mixture. Best spec: Roll24 CrisisAdj, AC–Score = 0.0173.

Table 28: Stratified AvgAbsGap by block for GMM Roll24 CrisisAdj (Full panel).

Block Start End AvgAbsGap

1 2005-06-03 2010-06-04 0.030

2 2010-07-02 2015-07-02 0.017

3 2015-08-07 2020-08-07 0.025

4 2020-09-04 2025-08-01 0.028

All 2003-06-06 2025-08-01 0.011

Table 29: Student–t empirical coverage results (Full panel).

Spec 50% 60% 70% 80% 90% 95% AvgAbsGap

Roll24 CrisisAdj 0.504 0.603 0.682 0.822 0.917 0.955 0.0116

Roll24 NoAdj 0.492 0.574 0.657 0.802 0.901 0.938 0.0150

Student–t. Best spec: Roll24 CrisisAdj, AC–Score = 0.022.

Table 30: Stratified AvgAbsGap by block for Student-t Roll24 CrisisAdj (Full

panel).

Block Start End AvgAbsGap

1 2005-06-03 2010-06-04 0.023

2 2010-07-02 2015-07-02 0.016

3 2015-08-07 2020-08-07 0.034

4 2020-09-04 2025-08-01 0.044

All 2003-06-06 2025-08-01 0.009
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Table 31: BMA empirical coverage results (Full panel).

Spec 50% 60% 70% 80% 90% 95% AvgAbsGap

Roll24 CrisisAdj 0.521 0.628 0.723 0.810 0.909 0.950 0.0150

Roll24 NoAdj 0.504 0.612 0.702 0.785 0.897 0.934 0.0101

BMA. Best spec: Roll24 NoAdj, AC–Score = 0.0371.

Table 32: Mean–absolute coverage gap by block for BMA Roll24 NoAdj (Full panel).

Block Start End AvgAbsGap

1 2005-06-03 2010-06-04 0.028

2 2010-07-02 2015-07-02 0.010

3 2015-08-07 2020-07-02 0.075

4 2020-08-07 2025-07-03 0.053

All 2003-06-06 2025-07-03 0.009

Table 33: GARCH(1,1)–t empirical coverage results (Full panel).

Spec 50% 60% 70% 80% 90% 95% AvgAbsGap

GARCH CrisisAdj 0.554 0.657 0.723 0.818 0.909 0.955 0.0276

GARCH NoAdj 0.533 0.645 0.707 0.802 0.888 0.934 0.0189

GARCH(1,1)–t. Best spec: GARCH NoAdj, AC–Score = 0.0823.

Table 34: Stratified AvgAbsGap by block for GARCH NoAdj (Full panel).

Block Start End AvgAbsGap

1 2005-06-03 2010-06-04 0.014

2 2010-07-02 2015-07-02 0.018

3 2015-08-07 2020-07-02 0.086

4 2020-08-07 2025-07-03 0.147

All 2003-06-06 2025-07-03 0.019
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Table 35: Consolidated best–spec performance across distributional methods (Full panel).

Method Best Tag AvgAbsGap AC–Score

Gaussian–Mixture Roll24 CrisisAdj 0.0114 0.0173

Student–t Roll24 CrisisAdj 0.0116 0.0221

BMA Roll24 NoAdj 0.0101 0.0371

GARCH(1,1)–t GARCH NoAdj 0.0189 0.0823

A.3 Top Weighted Economists for August 2025 Print

This appendix reports the top ten most heavily weighted economists for each model family

in the live forecast snapshot for the August 2025 NFP release, as well as the top ten in

the equal–model blend (25% per family).

Methodology. At the live evaluation date, we compute weights for each economist

within each model family by:

1. Filtering the snapshot to the most recent month.

2. Averaging weights across all live specifications and panels for that family.

3. Normalising so weights sum to 1 within each family.

For the equal–model blend, each family’s weight vector is scaled to a target share of 25%

and then summed across families to yield the final blended weights. These represent each

economist’s proportional influence on the aggregate signal.

How to read this table: Higher model weights indicate that the economist’s forecasts

currently have greater influence on the model family’s point forecast. A high rank across

multiple families signals an economist whose recent accuracy patterns have been broadly

rewarded. Conversely, low or absent weights indicate that the economist has either been

inactive or received little weight based on recent performance.
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Inverse–Error

Economist Model Weight

David P Kelly 3.90%

Seiji Katsurahata 3.11%

Ashworth/Dales 2.88%

Rhys Herbert 2.77%

Derek Holt 2.60%

Jason M Schenker 2.58%

Joe Brusuelas/Tuan Nguyen 2.50%

Michael R Englund 2.49%

Russell T Price 2.45%

Michael E Feroli 2.42%

EWMA

Economist Model Weight

David P Kelly 3.99%

Seiji Katsurahata 3.19%

Ashworth/Dales 3.05%

Rhys Herbert 3.03%

Jason M Schenker 2.69%

Derek Holt 2.68%

Michael R Englund 2.63%

Joe Brusuelas/Tuan Nguyen 2.51%

Michael E Feroli 2.50%

Oscar Munoz 2.43%
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soft-BMA

Economist Model Weight

David P Kelly 10.91%

Seiji Katsurahata 7.43%

Russell T Price 6.10%

David H Sloan 4.97%

Derek Holt 4.69%

Richard F Moody 4.65%

Ashworth/Dales 4.35%

Joe Brusuelas/Tuan Nguyen 4.32%

Rhys Herbert 3.38%

James Egelhof 3.19%

MWU

Economist Model Weight

Yongxin Chen 6.92%

Joe Brusuelas/Tuan Nguyen 6.75%

Andreas Busch 2.06%

Andrew Zatlin 2.06%

Avery Shenfeld 2.06%

Besch/Luetje 2.06%

Brett Ryan 2.06%

Christophe Barraud 2.06%

Christopher Hodge 2.06%

Crandall/Jordan 2.06%
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Equal–Model Blend

Economist Weight

David P Kelly 5.21%

Joe Brusuelas/Tuan Nguyen 4.02%

Seiji Katsurahata 3.95%

Yongxin Chen 3.39%

Russell T Price 3.24%

Ashworth/Dales 3.08%

Derek Holt 3.01%

David H Sloan 2.83%

Rhys Herbert 2.81%

Richard F Moody 2.71%
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