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Abstract

Portfolio optimization refers to the quantitative method that helps investors choose
the best mix of assets to achieve their investment goals. In this project, we propose
a machine learning-based approach to portfolio optimization. We ensemble 4
supervised learning methods - Principal Components Regression (PCR), Random
Forests (RF), Weighted Moving Average (WMA), and Gated Recurrent Unit (GRU)
neural networks to predict NASDAQ-100 stock prices before optimizing our con-
structed portfolio using the Markowitz mean-variance asset allocation framework
to determine asset weights. In our analysis, we aim to develop a method of portfolio
construction that combines cutting-edge machine learning methods with modern
portfolio theory to achieve optimal return-to-risk for investors seeking controlled
risk with strong returns. Through a sparsified optimization process, we present an
optimization strategy that delivers superior risk-adjusted returns as compared to
standard market indices over the same study period.

1 Introduction

Effective portfolio optimization is a cornerstone of modern finance where we aim to allocate assets in
a way that maximizes return while minimizing risk - a trade-off that is measured by the Sharpe ratio.
Traditional portfolio optimization methods, like the Markowitz mean-variance model [6], have been
widely adopted to maximize return for a given level of risk. The classical mean-variance framework
provides a foundational approach to the problem of optimal asset allocation by quantifying the
trade-off between expected returns and portfolio variance.

The evolving landscape of data-driven decision-making and advanced machine learning techniques
has opened new opportunities for developing more robust portfolio optimization strategies. In this
work, we propose the combination of modern portfolio theory with cutting-edge machine learning
models for asset return forecasting to construct optimized risk-to-return portfolios that outperform
conventional benchmarks. Specifically, this project leverages an ensemble approach to predict
asset returns and employs sparse optimization techniques to deal with issues of overfitting, investor
preference for sparse portfolios, and high dimensionality. Through the integration of predictive
analytics with portfolio optimization techniques, this work aims to optimize risk-to-return in our
proposed portfolio and formulate interpretable investment strategies by sparsifying asset weights.

We demonstrate the effectiveness of our optimization strategy by benchmarking the optimized
portfolio against standard market indices over the same time period. Experimental results show
significantly higher risk-adjusted returns in our optimized portfolio as compared to the market index
benchmark.

2 Background

We review basic financial concepts that will be used in the implementation and analysis of this
work. We refer readers to [4], a canonical resource on financial markets and investments, for a more
comprehensive review.



2.1 Risk-Free Rate

The risk-free rate (rf ) is a fundamental parameter in portfolio optimization, representing the theoreti-
cal return of an investment with zero risk.

In practice, the risk-free rate is typically proxied by the yield on short-term government securities,
such as U.S. Treasury bills, due to their negligible default risk and high liquidity. For this study, we
adopt a risk-free rate of 4.43%, which reflects the approximate annualized yield of the 3-month U.S.
Treasury bill as of the portfolio evaluation period [1].

2.2 Sharpe Ratio

Risk-adjusted performance evaluation is encapsulated in the Sharpe Ratio, which measures the excess
return per unit of risk taken by the portfolio. Mathematically, the Sharpe Ratio is expressed as
SR =

E[Rp]−rf
σp

, where E[Rp] denotes the expected return of the portfolio, rf is the risk-free rate,
and σp is the portfolio’s volatility, a proxy for its total risk. This ratio provides an effective metric to
compare the desirability of different investment strategies, particularly when returns are normalized
for risk exposure. We adopt the Sharpe Ratio as the primary portfolio performance evaluation metric
in this work.

2.3 Risk

Risk in a portfolio context is typically measured using the covariance matrix of asset returns, capturing
both individual asset volatilities and their co-movements. Diversification aims to reduce unsystematic
risk by combining assets with low or negative correlations. In the mean-variance optimization
framework, the portfolio volatility (σp) is given by σp =

√
wTΣw, where w is the vector of

portfolio weights and Σ is the covariance matrix of returns. By solving for an optimal allocation of
weights, investors aim to minimize risk for a given level of return or maximize return for a given level
of risk. This work performs the former - minimize risk for a target level of return.

3 Related Work

Prior works have explored the use of predictive models to enhance portfolio returns. Ban et al. in [3]
and Ta et al. in [12] emphasize the integration of machine learning algorithms for return prediction,
demonstrating that data preprocessing and technical indicators can significantly improve the accuracy
of these forecasts. Ban et al. highlight the value of incorporating domain-specific data features into
machine learning pipelines [3], while Ta et al. show that even basic regression-based methods, when
coupled with carefully engineered financial features, can outperform traditional statistical models
in prediction accuracy [12]. These predictive advancements align with the increasing reliance on
neural network architectures, as shown by Gunjan et al., who use deep learning to capture nonlinear
dependencies in stock price data [5].

A common challenge in portfolio optimization outlined in previous works is high-dimensionality.
Specifically, high-dimensionality in the estimation and filtering of correlation matrices for large-scale
portfolios. This issue is critical, as noisy correlation estimates can lead to suboptimal allocations.
Tola et al. in [16] addresses this by employing clustering techniques and random matrix theory (RMT)
to improve the robustness of correlation matrices, enhancing portfolio stability. This work provides
a theoretical basis for handling high-dimensional data and complements more recent data-driven
efforts.

Our research builds upon these foundational contributions by combining advanced predictive models
with portfolio optimization under constraints. Specifically, in forecasting, we leverage deep learning
architectures such as GRU models to capture temporal dependencies in tandem with more traditional
statistical approaches for additional robustness. This ensemble approach addresses a key limitation of
single-method forecasts: the potential for overfitting to specific patterns in the data. For instance,
traditional approaches may struggle in volatile markets where historical averages fail to capture
emerging trends. By contrast, the integration of multiple methods provides a balanced view, mitigating
the weaknesses of individual models. The use of L1 regularization in the optimization step introduces
sparsity in the asset weight vector, providing a way to handle high-dimensional data. Furthermore,
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by benchmarking our optimized portfolio against standard market indices, this work evaluates the
practical impact of our proposed asset allocation strategy. We contribute to the growing literature
by integrating ensemble forecasting and constrained optimization into a cohesive asset allocation
framework, bridging the gap between advanced machine learning methods and modern portfolio
theory.

4 Data

We use stocks from the NASDAQ-100 index for constructing the optimized portfolio in this work
primarily for their growth and volatility characteristics. The NASDAQ-100 index consists of mainly
technology and growth-oriented companies that exhibit higher growth and volatility as compared to
a broader market index, making it better suited given the project’s aim of capturing dynamic price
movements. These diverse price movements and trend shifts are able to enhance the robustness of the
implemented forecasting models in capturing complex patterns. A full list of NASDAQ-100 tickers
is available in the appendix at 5.

4.1 Data Scraping and Preprocessing

Historical stock data for NASDAQ-100 companies was sourced from Yahoo Finance using the
yfinance API with a daily frequency. Data was limited to the time period from November 1, 2023
to November 1, 2024 in consideration of computational requirements of deep learning methods,
inverting and multiplying large matrices, and merging substantial dataframes in the optimization step.
For each of the 100 companies in the NASDAQ index, historical stock data was scraped containing
the following features:

• Adjusted Close Price: Closing price of the stock adjusted for corporate actions (stock splits,
dividends, etc.)

• Close, High, Low, and Open Prices: Final, highest, lowest, and first trading prices of the
stocks during the trading day respectively.

• Daily Trading Volume: Total number of shares traded during the trading day, indicating the
level of market activity.

Data preprocessing included multiple steps to transform the raw financial data from yfinance into a
form suitable for portfolio optimization. Metadata and irrelevant rows were removed, date columns
were standardized into a datetime format, and numeric columns (Adjusted Close Price, Volume) were
coerced into appropriate data types with invalid and missing entries dropped.

4.2 Feature Engineering

Additional features representative of medium-term return and volatility were engineered to reduce
the overall bias of our predictive models. These engineered features include:

• 20-Day Returns: Percentage change in adjusted closing prices over a rolling 20-day period.

• 20-Day Volatility: Rolling standard deviation of daily return over 20 days, reflecting stock
price fluctuation.

• Normalized 20-day return and volatility: Standardized versions of the above engineered
features with zero mean and unit variance.

20-day returns gives an indication of recent stock performance and is useful for identifying stocks with
strong momentum, which is crucial for portfolio selection. Similarly, rolling volatility provides insight
into changing market dynamics and provides useful information for adapting portfolio strategies to
current risk environments. The 20-day period, an often-used proxy for the number of trading days in
a month, provides insight into medium-term trends that are more actionable than short-term noise.

Missing values in these engineered features were imputed using mean imputation to ensure consistency
across the dataset [10]. Key features were also standardized using StandardScaler to have zero mean
and unit variance [11].
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4.3 Exploratory Data Analysis

Trading volume shown at 7 has a highly skewed distribution (12.49 million mean volume, 1.14
billion maximum volume), indicating trading activity domination by large-cap stocks. The high
standard deviation in Adj Close indicates significant variability in stock prices. Prices range from
6.71 to 4676.25, indicating the presence of statistical outliers or a few exceptionally high-price stocks.
The substantial variability and skew in adjusted close prices shown underscores the importance of
standardization in the preprocessing step to prevent the dominance of high-priced stocks in subsequent
modeling steps. The time series evolution of adjusted close prices for the top 5 stocks by Adj Close
in the NASDAQ-100 index at 3 is highly suggestive of a bull market.

5 Methods

We deploy four forecasting methods in Python - Weighted Moving Average (WMA), Principal
Components Regression (PCR), Random Forests (RF), and Gated Recurrent Unit (GRU) neural
networks for predicting prices of stocks within the NASDAQ-100 index. We use these predicted stock
prices to compute predicted returns. Predicted returns are then used in a sparsified mean-variance
optimization framework for asset allocation to determine asset weights. Lastly, key financial metrics
(return, volatility, Sharpe ratio) of the optimized portfolio are computed and benchmarked against a
market-capitalization weighted standard market index portfolio covering the same time horizon.

Figure 1: Project Architecture

For each forecasting method, we employ a sliding window validation approach to evaluate model
performance and compute predicted returns to be aggregated in the subsequent portfolio optimization
process.

5.1 Weighted Moving Average

Weighted Moving Average (WMA) is a time series forecasting technique that applies linearly
decreasing weights to past observations, emphasizing recent data while progressively reducing the
influence of older data. The method’s adaptability and simplicity make it particularly suited for
financial time-series forecasting given the autocorrelation of financial data and need for robust yet
interpretable modeling.

We implement a dynamic WMA model that predicts future stock prices using a rolling-window
approach with a window size of 22-days. Each forecast is generated as a weighted average of the most
recent n days of adjusted closing prices, where weights are linearly assigned. Weights are defined as
wt = t for the t-th day in the window to ensure the most recent data has the highest weight.

The WMA estimate for a given time t is calculated as:

WMAt =

∑n
i=1 wi · Pt−i∑n

i=1 wi
,
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where Pt−i represents the adjusted closing price i days prior to t, and wi = i is the weight corre-
sponding to the i-th day.

Future prices are forecasted through an iterative process:

• Initialization: Begin with the last n observed prices

• Forecasting: Calculate WMA and append to rolling window

• Iteration: Update the rolling window by removing the oldest price and including the new
forecast

This process is repeated for the desired forecasting horizon in a stepwise forecasting fashion. Short-
term forecasts are generated iteratively across the entire dataset where predictions rely on local trends
within the 22-day historical window to forecast trends over the next 22-day horizon. This method
allows us to capture recent trends and adjust dynamically as new data becomes available. Given the
non-stationary nature of financial data, a sliding window approach is more appropriate as it allows the
model to focus on a localized segment of the data rather than assuming a single global distribution
for the entire dataset.

5.1.1 Sliding-Window Validation

To evaluate predictive performance of WMA and the rest of our forecasting methods, we employ
a sliding-window validation approach. Given the temporal dependencies inherent in stock price
time-series data, classical validation set and k-fold cross-validation approaches are inappropriate
for this work. Sliding-window validation allows us to preserve the temporal structure of financial
data, adapts to non-stationary market dynamics, and is able to evaluate the model’s robustness across
multiple future periods. It also aligns closely with real-world forecasting practices where predictions
are constantly updated based on recent data.

Price data is divided into training and testing windows:

• Training Window: Compute the WMA forecast over the past n days, where we use a
window size of n = 22 trading days

• Testing Window: Compare the forecasted prices to the actual observed prices for the
subsequent h days, where we use a forecasting horizon of h = 22 trading days

For each window, forecasts are generated for the testing period using the WMA method and the
accuracy of these forecasts is quantified using Mean Squared Error (MSE), defined as MSE =

1
h

∑h
t=1

(
P̂t − Pt

)2

, where P̂t and Pt denote the forecasted and actual prices, respectively. We
further compute a normalized MSE to account for variations in stock price magnitudes across different
assets. We normalize the MSE by the mean adjusted closing price: Normalized MSE = MSE

Mean Price2 .

The normalization allows for a more fair comparison of predictive accuracy across the NASDAQ-100
dataset of diverse magnitudes.

These normalized MSE values are computed for each ticker, and the individual normalized MSEs
for each of the 100 tickers are aggregated to compute an overall normalized MSE for the method:
Overall Normalized MSE =

∑N
i=1 Normalized MSEi

N , where N = 100 is the number of tickers analyzed.

Overall normalized MSE provides an overarching view of the model’s predictive performance across
the entire portfolio of assets.

5.1.2 Predicted Returns

In addition to price forecasts, we compute predicted simple returns from the sequence of forecasted
prices for each of our forecasting methods: Rt =

P̂t+1−P̂t

P̂t
.

These returns serve as estimated returns of individual assets that are used in the subsequent portfolio
optimization process.
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5.2 Principal Components Regression

Principal Components Regression (PCR) is a hybrid method that combines dimensionality reduction
through Principal Component Analysis (PCA) with linear regression to model the relationships
between features and target variables. We opt to use PCR for its effectiveness dealing with high-
dimensional datasets. In the project, we deploy PCR with a sliding window approach to forecast the
adjusted closing prices of NASDAQ-100 constituents.

The PCR pipeline consists of three main stages:

• Feature Selection: We extracted the following features over a 22-day window: 20-day
returns, 20-day volatility, and normalized versions of these features. These features were
then standardized to ensure scale invariance before performing PCA.

• Dimensionality Reduction: PCA was applied to reduce the dimensionality of the feature
space.

• Regression Modeling: Multiple linear regression was performed on the transformed feature
space to predict adjusted closing prices.

For each sliding window of n = 22 days, PCR is trained on the most recent 22-day window and
produces a forecast for the next 22 trading days (forecasting horizon, h = 22). This forecast is
represented as an output vector ∈ R22, containing the predicted prices for each of the 22 days. The
process is repeated across the entire dataset using a step size of 22 days. Model validation follows the
process outlined in 5.1.1.

5.3 Random Forest

Random Forest Regression (RF) is a robust ensemble learning method that constructs multiple
decision trees during training to perform predictions by averaging their outputs. In this work, we
utilize RF to predict the adjusted closing prices for a sequence of 22 trading days (forecast horizon,
h = 22) based on engineered financial features. The non-parametric nature of RF allow it to model
complex, non-linear relationships that are prevalent in financial time-series data.

Utilizing our four engineered features, we instantiate the RF model with 20 estimators (trees) and
constrain the maximum depth to 5 to prevent overfitting. These hyperparameters were selected using
a heuristic approach and small sample empirical testing. Grid search methods for hyperparameter
tuning were not adopted for the n_estimators and max_depth hyperparameters due to computational
constraints.

Validation is done with a sliding window validation framework, using the same process outlined
in 5.1.1, but with the training window condensed to 15 days instead of 22 due to computational
constraints when implementing RF on our data.

5.4 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a type of recurrent neural network that is particularly adept at capturing
temporal dependencies in sequential data, making it highly suitable for time-series forecasting in
finance. Our four engineered features encapsulating momentum and risk characteristics of the stocks
are fed as inputs for the GRU model to forecast the adjusted closing price target variable. We
implement GRU with a training window size of n = 20 days and a forecast horizon of h = 22 days.
The GRU model is constructed using Tensorflow[15] and Keras[14], comprising of the following
layers:

• Input Layer: Accepts sequences of shape (20, features), where 20 is the sequence length
and features represent the dimensionality of input data.

• GRU Layer: A single GRU layer with 16 units and ReLu activation to capture temporal
dependencies and learn sequential patterns.

• Dense Layer: A fully connected layer with a single neuron to output the predicted stock
price for the next day.

The GRU’s architecture effectively leverages its gating mechanism to retain and discard information,
making it suitable for noisy financial data. The model was compiled using the Adam optimizer with
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a MSE loss function[2]. Early stopping was also employed to prevent overfitting[13]. Validation
follows the same sliding window approach outlined in 5.1.1.

Given the high computational cost of the GRU deep learning architecture and our substantial data size,
several considerations were made to accommodate the computational complexity. Model architecture
was kept relatively simple and the model was trained for only a single epoch per sliding window
validation cycle to accommodate computational constraints. The batch size, controlling how many
training sequences are processed in parallel, was dynamically adjusted to be the smaller of 16 or the
available training samples.

5.5 Optimization Process

The portfolio optimization step follows a three-step process:

1. Estimation of Covariance Matrix
2. Predicted Returns Integration
3. Mean-Variance Optimization with L1-regularization

Key performance metrics are then computed for the optimized portfolio.

5.5.1 Covariance Matrix Estimation

The portfolio optimization process begins with an estimation of the covariance matrix which quantifies
the co-movements and interdependencies between asset returns. For any assets i and j, the covariance
is defined as Cov(i, j) = E[(Ri − µi)(Rj − µj)], where Ri and Rj denote daily returns of assets i
and j, and µi and µj denote their respective means. We construct the covariance matrix Σ from all
pairwise asset covariances and save it for use in the subsequent optimization steps.

5.5.2 Integration of Predicted Returns

To integrate predicted returns from our forecasting models, we utilize predictions from all four models
(WMA, PCR, RF, GRU) and average the predicted return for each ticker: E[R]i =

1
M

∑M
m=1 r̂

(m)
i ,

where M = 4 is the number of forecasting models and r̂
(m)
i is the predicted return of asset i from

model m.

This approach of aggregating expected returns equally weights the output from each forecasting
method to obtain an average predicted return for each ticker. Ensembling results from each of our
methods has several distinct advantages:

• Reduction in Model-Specific Bias: Aggregating predictions mitigate biases and limitations
of any single forecasting model, producing a more balanced and robust estimate.

• Robustness to Noise: Averaging across multiple methods dilutes the impact of overfitting,
reducing sensitivity to noise and improving generalizability.

• Incorporation of Diverse Perspectives: Short-term trends, sequential dependencies, and
nonlinear relationships captured in each individual method allows the portfolio optimization
process to integrate complementary signals.

The expected return vectors for each asset i are combined to form an aggregated expected returns
vector E to be used in the portfolio optimization process:

E =


E[R]1
E[R]2

...
E[R]n

 =
1

M

M∑
m=1


r̂
(m)
1

r̂
(m)
2
...

r̂
(m)
n

 ,

5.5.3 Sparsified Mean-Variance Optimization

We implement sparse portfolio optimization using L1-regularization to induce sparsity in the weight
vector. Formally, we define the optimization objective function and corresponding constraints as:
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min
w

w⊤Σw + λ∥w∥1

Subject to:

1. Budget Constraint:
∑n

i=1 wi = 1, where wi ≥ 0 ensures a long-only portfolio.

2. Target Return Constraint: w⊤E ≥ Rtarget, ensuring the portfolio achieves at least the
specified expected return (We set Rtarget = 10%, a proxy for the average S&P 500 annual
return[8])

We utilize a grid search approach to tune the λ regularization hyperparameter, controlling the sparsity
level, for λ ∈ [0.01, 0.05, 0.5, 1, 5, 10, 25, 50, 100]. Sparse optimization is iterated over these
values of λ to identify the optimal portfolio by Sharpe ratio using the Sequential Least Squares
Programming (SLSQP) method from scipy.optimize[7]. λ = 50 is chosen as a result of this process of
hyperparameter tuning.

Post-optimization, asset allocation weights for the optimized portfolio are determined, and key
portfolio metrics are computed 7.

6 Results

6.1 Stock Price Forecasting

We present the overall normalized MSE (5.1.1) for the four forecasting methods:

Table 1: Overall Mean Normalized MSE for Forecasting Methods
Forecasting Method Overall Mean Normalized MSE
Weighted Moving Average (WMA) 0.0071
Principal Components Regression (PCR) 0.5140
Random Forest (RF) 0.0058
Gated Recurrent Unit (GRU) 1.0286

Overall, if favoring parsimony, simple models like WMA may seem naive compared to more flexible
machine learning methods but are highly effective for short-term forecasting. The non-parametric
nature of RF allows it to capture non-linear relationships effectively, making it the best performing
method overall. For stock price forecasting, RF and WMA should receive greater emphasis to
minimize prediction bias.

GRU’s high error underscores the need for more robust training (additional epochs, hyperparameter
tuning) to leverage its sequential modeling capabilities. As a result, GRU has significant potential for
improvement with additional training and hyperparameter tuning, making it viable for longer-term
and more complex forecasting tasks out of sample if computational resources allow for rigorous
hyperparameter tuning. PCR provides benefits from dimensionality reduction, but does not capture
the complex nature of financial markets. Its reliance on dimensionality reduction and linear assump-
tions is anticipated to limit its out-of-sample performance, especially in volatile market conditions.
Ensembling these forecasting methods for prediction, however, is still highly beneficial as outlined in
5.5.2. The ensemble approach we utilize in this work mitigates individual model biases and leverages
complementary strengths to enhance robustness to noise.

6.2 Portfolio Benchmarking

We present the asset allocation weights for each stock in our optimized portfolio, obtained from our
sparse portfolio optimization process, in the appendix at 6.

To provide a robust benchmark for evaluating the performance of the optimized portfolio, we calculate
the same annualized financial metrics (return, volatility, Sharpe ratio) for the market-capitalization
weighted NASDAQ-100 market index over the same study period from November 1, 2023 to
November 1, 2024.
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We present annualized financial metrics for our optimized portfolio and benchmark portfolio:

Portfolio Return Volatility Sharpe Ratio
Optimized Portfolio 26.85% 10.05% 2.23
NASDAQ-100 Benchmark 35.63% 17.54% 1.58

Table 2: Comparison of Optimized Portfolio Metrics with Benchmark Index

Results show highly favorable performance relative to the benchmark index. Specifically, the
optimized portfolio achieves a Sharpe ratio of 2.23, a 40% improvement over the Sharpe ratio of 1.58
in the benchmark. The annualized volatility of the optimized portfolio is also 42% lower than that of
the NASDAQ-100.

The substantial improvement in the Sharpe ratio over the benchmark index highlights the advantages
of active portfolio management over passive index tracking. Results demonstrate the value of
quantitative optimization techniques in achieving superior portfolio metrics as measured by risk-to-
return, emphasizing risk-adjusted returns over absolute return performance.

7 Conclusion

We propose to give greater consideration to WMA for stock price forecasting if favoring model
parsimony, and recommend RF for forecasting longer time horizons or to handle time-series data
with high volatility. The above outlined methods significantly outperform the other tested forecasting
methods and are likely to generalize well out-of-sample.

In this work, we also present an implementation of a sparsified portfolio optimization framework that
demonstrates significantly higher risk-adjusted return metrics as compared to a market index bench-
mark. However, the lower absolute return suggests a conservative investment approach where the
optimization process prioritized risk minimization, which may not align with the return expectations
of more aggressive investors in a bull market.

Computational limits were a significant obstacle in this work given the substantial data size and
high computational cost of deep learning methods. Long Short-Term Memory (LSTM) neural
networks were initially adopted for forecasting stock prices in this project due to their well-established
reputation for financial time-series forecasting [9], but the implementation was removed in favor of a
simplified GRU model to save on computational cost when the RAM requirements to run LSTMs
on our data locally proved unfeasible. GRUs are a streamlined version of LSTMs, simplifying the
sequential architecture and reducing the risk of overfitting. With additional computing resources,
more complex deep learning architectures could be adopted with a more rigorous hyperparameter
tuning process beyond the simplified GRU implementation and hyperparameter heuristic approach
we adopt here.

Potential extensions include an exploration of a portfolio rebalancing strategy. Developing a dynamic
portfolio rebalancing framework to adjust portfolio weights in response to changing market conditions
would enhance the robustness and adaptability of the investment strategy. Robustness checks, such as
out-of-sample validation and backtesting, would also be useful to check that the performance metrics
obtained are not artifacts of the specific dataset used. Moreover, there are multiple extensions that
could be made to extend the practical trading applicability of this work. Since we forecast adjusted
close prices instead of actual close prices, trading applications of this work are limited as adjusted
prices include the effects of corporate actions. Adopting an implementation that forecasts actual close
prices or returns, alongside the incorporation of transaction costs, would lend more practical trading
applicability to the proposed investment strategy.
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Appendix

Table 3: Statistical Summary of Selected Features
Statistic Adj Close Volume Normalized 20-Day Returns Normalized 20-Day Volatility

count 25452.0 25452.0 25452.0 25452.0
mean 267.29 12490069.92 -1.40e-18 -8.38e-19
std 426.44 45372941.51 1.00 1.00
min 6.71 79400.0 -3.85 -2.74
25% 76.68 1442850.0 -0.63 -0.67
50% 156.35 3109600.0 0.00 -0.17
75% 270.76 7833000.0 0.61 0.37
max 4676.25 1142269000.0 4.98 5.49

Figure 2: Distribution of Adj. Close Prices

Figure 3: Time Series Plot of Adjusted Close Prices
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Table 4: Portfolio Metrics
Metric Formula Description
Return (Rp) Rp = w⊤E Measures the expected return of the portfo-

lio, where w is the vector of weights and E
is the vector of expected returns.

Volatility (σp) σp =
√
w⊤Σw Measures the risk of the portfolio, calcu-

lated as the standard deviation of portfolio
returns using the covariance matrix Σ.

Sharpe Ratio Sharpe Ratio =
Rp−rF

σp
A risk-adjusted return measure that com-
pares the excess return of the portfolio rel-
ative to the risk-free rate rF per unit of
volatility.

Table 5: NASDAQ-100 Tickers

Ticker 1 Ticker 2 Ticker 3 Ticker 4 Ticker 5
AAPL ABNB ADBE ADI ADP
ADSK AEP ALGN AMAT AMD
AMGN AMZN ANSS ARM ASML
AVGO AZN BIIB BKNG BKR
CCEP CDNS CDW CEG CHTR

CMCSA COST CPRT CRWD CSCO
CSGP CSX CTSH DASH DDOG
DLTR DXCM EA EXC FAST
FANG FTNT GEHC GFS GILD

GOOGL HON IDXX ILMN INTC
INTU ISRG KLAC KDP KHC
LIN LRCX LULU MAR MCHP

MDB MDLZ MELI META MNST
MRNA MRVL MSFT MU NFLX
NVDA NXPI ODFL ON ORLY
PANW PAYX PCAR PDD PEP
PYPL QCOM REGN ROP ROST
SBUX SNPS TEAM TMUS TTD
TSLA TXN TTWO VRSK VRTX
WBA WBD WDAY XEL ZS
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Table 6: Sparse Portfolio Weights for Optimized Portfolio
Ticker Weight Ticker Weight Ticker Weight
AAPL 0.0129 ABNB 0.0052 ADBE 0.0094
ADI 0.0034 ADP 0.0165 ADSK 0.0068
AEP 0.0194 ALGN 0.0000 AMAT 0.0000
AMD 0.0000 AMGN 0.0146 AMZN 0.0076
ANSS 0.0082 ARM 0.0000 ASML 0.0000
AVGO 0.0000 AZN 0.0183 BIIB 0.0136
BKNG 0.0103 BKR 0.0160 CCEP 0.0167
CDNS 0.0030 CDW 0.0109 CEG 0.0081
CHTR 0.0122 CMCSA 0.0155 COST 0.0145
CPRT 0.0114 CRWD 0.0034 CSCO 0.0144
CSGP 0.0106 CSX 0.0153 CTAS 0.0140
CTSH 0.0142 DASH 0.0063 DDOG 0.0040
DLTR 0.0133 DXCM 0.0133 EA 0.0151
EXC 0.0198 FANG 0.0172 FAST 0.0148
FTNT 0.0142 GEHC 0.0103 GFS 0.0000
GILD 0.0194 GOOG 0.0105 GOOGL 0.0105
HON 0.0151 IDXX 0.0087 ILMN 0.0048
INTC 0.0000 INTU 0.0079 ISRG 0.0100
KDP 0.0197 KHC 0.0202 KLAC 0.0000
LIN 0.0171 LRCX 0.0000 LULU 0.0083
MAR 0.0111 MCHP 0.0000 MDB 0.0005
MDLZ 0.0192 MELI 0.0104 META 0.0087
MNST 0.0179 MRNA 0.0033 MRVL 0.0000
MSFT 0.0124 MU 0.0008 NFLX 0.0122
NVDA 0.0000 NXPI 0.0004 ODFL 0.0099
ON 0.0000 ORLY 0.0190 PANW 0.0075
PAYX 0.0159 PCAR 0.0122 PDD 0.0107
PEP 0.0201 PYPL 0.0080 QCOM 0.0016
REGN 0.0154 ROP 0.0138 ROST 0.0137
SBUX 0.0122 SNPS 0.0025 TEAM 0.0037
TMUS 0.0195 TSLA 0.0000 TTD 0.0040
TTWO 0.0138 TXN 0.0065 VRSK 0.0188
VRTX 0.0161 WBA 0.0115 WBD 0.0065
WDAY 0.0110 XEL 0.0208 ZS 0.0016
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