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Abstract

AirBnB, an online marketplace facilitating homestays and experiences, has grown

to own approximately a quarter of the reservation-and-online-booking market and a

fifth of the vacation rental market in recent years. As it is a platform that facilitates

interactions between buyers and sellers, price is naturally a primary covariate of

interest for both parties involved in the transaction. In this paper, we propose a

machine learning and econometrics based approach for the price prediction of

AirBnB listings in major U.S. cities. For price prediction, we deploy 4 different

supervised methods - forward selection, LASSO regression, polynomial regression,

and boosting. These methods are specifically chosen to be split approximately

evenly between linear and nonlinear methods. The motive of this study is to

attempt to build a price prediction model that can prognosticate the price of an

AirBnB listing with maximum accuracy. Experiments are run on the AirBnB

listings in Major U.S. Cities Dataset sourced from the Kaggle repository in [4].

For performance evaluation of our regression models, cross-validation is used to

estimate prediction error with Root Mean Squared Error (RMSE) as a measurement

metric. Results show that amongst the models tested, boosting is the best model

for predicting price of AirBnB listings. Additionally, input features indicative of

maximum occupancy or location are found to be most significant through a process

of robust feature selection.

1 Introduction

In many ways, AirBnB has ushered in a new generation of lodging. Since it was founded in 2008,

AirBnB has become one of the most successful pioneers of the sharing economy, transforming the

travel industry around the world. By helping more than 200 million guests find individual hosts,

AirBnB has shaken up the hospitality business and urban real estate markets. As of 2023, AirBnB has



a 28% share in the reservation-and-online-booking market. This growth has brought AirBnB from

nothing to a $75bn firm in just 15 years[2].

Today, AirBnB has over 150 million users and hosts more than half a billion guests per year[3]. With

5.6 million listings spanning over 220 countries and regions, it has become the go-to vacation renting

service for many travellers today. Given its ubiquity, proper pricing of AirBnB listings has never

been more important. It is of primary interest to both buyers and sellers in the AirBnB marketplace.

In an economic context, buyers are seeking to yield the best utility for their dollar spent, or the best

"bang-per-buck". Sellers, on the other hand, are trying to maximize the return on their real estate

investment in the form of profit. The ability to accurately forecast what would be deemed fair-value

for an AirBnB listing is thus immensely valuable for both parties in the vacation home and rental

market.

This project aims to explore both linear and nonlinear regression models for price prediction of

AirBnB listings in the U.S. Specifically, we aim to compare the predictive performance of forward

selection, LASSO regression, polynomial regression, and boosting by evaluating their performance

through cross-validated RMSE. With the identification of an accurate predictive model, buyers/sellers

on the AirBnB platform can obtain accurate predictions of listing price given relevant input features.

By performing robust feature selection, we can also comment on the relative variable importance.

In other words, by comparing important features across different models, we can identify the most

significant subset of variables that allows us to predict the price of an AirBnB listing with maximum

accuracy. Consumers then are able to use the information gleaned from our process of robust feature

selection as a yardstick to assess fair-valued listings.

2 Literature Review

Prior to beginning, we surveyed other projects that used machine learning algorithms to explore a

similar problem space in economics. Much of the work in this area is centered around the concept of

hedonic regression. Hedonic regression is a regression technique used to determine the value of a

good, service, or asset by fractionating the product into constituent parts or characteristics. This is

done to determine the contributory value of each characteristic separately through regression analysis.

The regression model should be able to place values and weights on each component or contributory

factor to determine the value of the product/service[10]. Yazdani in [13] for instance compares

deep learning methods to hedonic methods for real estate price prediction. Real estate is a common

example where hedonic pricing methods are used as the piece of land can be determined by both

internal factors as well as characteristics of its surrounding environment[9]. In this project, we apply

linear regression in a similar fashion whereby ’hedonic’ features are able to be removed from price.
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In other words, given the attributes of a particular AirBnB listing, our models would be able to price

the AirBnB listing even if an exact match of attributes is not found in the dataset. However, while

hedonic price regressions have been primarily used for inference[7], we seek to utilize machine

learning methods for prediction.

Some economics studies we surveyed use deep learning via Artificial Neural Networks (ANNs)

for price prediction. Awotunde et al. in [12] adapts Long Short-Term Memory (LSTM) to build a

cryptocurrency price prediction model. Many other financial economics projects also favor ANNs due

to their flexibility and ability to adapt to the stochastic nature of financial fluctuations. For example,

Li et al. in [5] explores the application of ANNs in forecasting market prices. For this project, we

exclude the use of ANNs/deep learning methods for several reasons. Neural networks are a class

of highly flexible learning methods that deal well with high-dimensional and noisy data. However,

flexible methods come at a cost of being less interpretable than their less flexible counterparts.

Additionally, the model’s flexibility makes the data to parameter ratio paramount - regularization

of neural networks is key to avoid the risk of overfitting. Hence, we exclude the implementation of

neural networks in this research work to prioritize model interpretability over minimizing bias.

In this paper, we present a machine learning based approach to price prediction that differs from

much of existing economics literature in scope of methods applied. Many other studies exploring a

similar problem space, such as Li et al. in [5], utilize a narrow set of methods in their work. For the

case of Li, their work is focused on exploring the implementation of ANNs in-depth. Vijh et al. in

[16] focuses on implementing ANNs and random forest methods to predict stock closing price. For

our work, having a breadth of methods is prioritized to better suit our research goals. Specifically, in

this project, both linear as well as nonlinear methods are used to span a range of model flexibility.

Fitting models of different flexibilities is important due to the bias-variance tradeoff implicit in fitting

flexible models with more degrees of freedom. Specifically, minimizing bias often comes at the cost

of an increase in variance. In the absence of knowledge of the true form of our data, fitting a wide

scope of models that run the gamut of model flexibility gives us a better chance of optimizing the

bias-variance tradeoff and choosing an appropriate model.

3 Data

This project uses panel data from a 2017 AirBnB survey, sourced from the Kaggle repository in [4].

The dataset contains 74,111 observations and 28 features, one of which is price in a logarithmic

scale. Data preprocessing occurs in several stages. As natural language processing is not a focus of

this project, descriptive features requiring substantial amounts of text parsing are removed. Price is

exponentiated to a regular scale from a logarithmic scale, NA values are removed, strings are cleaned
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for special characters, relevant character variables are typecasted to factors, and the data is split into a

training and test set in an 80/20 ratio. Factor levels for all factor variables are then equated between

the training and test sets to avoid factor discrepancies between them. The result of this process of

data cleaning is a training dataset with 38,111 observations and a test dataset with 9,558 observations.

Both train and test datasets have 22 features, one of which is the target variable price. Details on the

full list of features are available in the appendix7.

Tuning parameters are selected and models are trained using the 80% training data. The 20% training

data is used as unseen held-out data for model evaluation.

It is important to first acknowledge some limitations of our data. Due to missing variables, missing

observations, and unclean data, approximately a third of the original 74,111 observations are not able

to be used for either training or testing. As model prediction accuracy typically improves when it is

trained on more data, this limitation may possibly result in an overestimate of our test RMSE.

In the rest of this section, we present a brief exploratory data analysis of the price target variable.

Across all observations, the price variable has a minimum of 1, mean of 148.8, median of 110, and

maximum of 1999. This positive-skewed distribution is illustrated below.

Figure A: Distribution of Price Variable

We also have to acknowledge existing geographic differences in AirBnB pricing. There is a nontrivial

difference in the distribution of price when the observations are stratified by geographic region

(city). High cost of living areas such as New York City (NYC) and Los Angeles (LA) have a price

distribution that is skewed upwards.
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Figure B: Stratified Boxplot of Price

To conclude this exploratory data analysis, we explore the correlations the price variable has with the

quantitative features in the dataset.

Figure C: Correlation Plot of Price

Notably, price has the highest correlation with the feature accommodates. For this reason, accom-

modates is used as the input feature for fitting our polynomial regression method. The features

bathrooms, bedrooms, and beds are highly correlated with price as well and come closely behind. As

all of the quantitative input features with high correlations with price are signals of the maximum

occupancy of the AirBnB listing, we can form a preliminary hypothesis that the best quantitative

predictor of AirBnB listing price is a measure of the maximum occupancy of the unit. Moreover,

since all the quantitative variables identified above are signals of maximum occupancy, there is

significant overlap in how these features add predictive power to a model. Thus, we opt to implement
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a polynomial regression with just a single feature (accommodates) as opposed to multiple features for

parsimony and interpretability.

4 Models/Methods

As a high-level overview of our methodology, the data is first read and preprocessed. After data

preprocessing, for models that need to be tuned, we conduct cross-validation on the training data

to choose the tuning parameters for our methods. We then use a validation set approach to assess

predictive performance on the held-out data for the following regression methods: forward selection,

LASSO regression, polynomial regression, and boosting. Finally, results from our experiments are

contrasted in a comparative analysis.

The implementation of the project is written in the R programming language, primarily using the

classification and regression training (caret) package to streamline the process for creating our

predictive models[11].

AirBnB Dataset Preprocess Data Forward Selection

LASSO RegressionPolynomial RegressionBoosting

Comparative Analysis Results and Conclusion

Table 1: Architecture of the Proposed System

These individual methods are expanded upon in greater detail within the subsections below. In

this section, we discuss model assumptions, details of our methodology, and our process of cross-

validation for tuning parameter selection.

The first two methods we deploy utilize a linear regression framework, where we assume the

parametric form:

Ŷi = XT β̂ (1)

Due to the large amount of variables present in our dataset, for our linear models, forward selection

and LASSO are chosen for their ability to perform shrinkage and feature selection.
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4.1 Forward Selection

We deploy forward selection, a form of stepwise regression, as our first regressive model. This builds

a parsimonious linear regression model iteratively where we begin with the null model and add the

best predictor at every step. This algorithm is stopped by the stepAIC function when we no longer see

an improvement in the Akaike Information Criterion (AIC) metric. Consequently, a feature subset is

formed through this iterative process where features are sequentially selected in a greedy fashion.

As it is a greedy selection algorithm that adds the best predictor at every step, we acknowledge the

limitation that forward selection does not provide the flexibility to remove the features that have

already been added in cases where they have become obsolete after the addition of new features.

4.2 Linear Regression with L1 Regularization

We deploy a linear regression model with L1 regularization, also known as LASSO regression, as

our second regression model. We opt for LASSO regression as the L1 regularization penalty has the

ability to perform feature selection. With p = 21 possible input features, some form of shrinkage

is pertinent for this research work. The implemented L1 penalty shrinks some coefficients to zero -

this effectively removes the input feature from the model and allows for shrinkage[17]. We deploy

LASSO regression, with loss defined as:

Loss = Error(Y − Ŷ ) + λ
∑n

1 |wi|

The λ tuning parameter, controlling the regularization penalty, is particularly pertinent for LASSO

because different values of λ will result in different features being selected. This effectively makes

LASSO a backwards greedy selection algorithm where the least useful features are the first to be

eliminated by the λ penalty. To accomplish this, we deploy repeated 5-fold cross-validation on the

80% training data (10 repeats). We optimize with the λ
∑n

1 |wi| penalty, select the remaining features

with nonzero coefficients, train an unpenalized model with those features, and compare performance

via RMSE. We repeat this process for 16 different values of λ (λ ∈ (0,0.3) with increments of 0.02)

on each of the 5 folds and choose the λ that gives the best performance by RMSE. λ = 0.12 is chosen

as the outcome of this process of cross-validation.
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Figure D: Cross-validation RMSE for Tuning Shrinkage Parameter for LASSO

4.3 Polynomial Regression

The methods defined above are fundamentally linear regression methods applied with shrinkage. We

deploy polynomial regression as our first nonlinear regression method to predict price of AirBnB

listings. It is important to note, however, that while we fit a nonlinear model to the data using

polynomial regression, it is a linear statistical estimation problem where E(Y|X) is linear in the

unknown parameters estimated from the data.

For a single variable polynomial regression there are two primary tuning parameters that we need

to choose: the input feature for which to apply the polynomial regression and the degree of the

polynomial.

To choose the input feature for the polynomial regression, we conduct an exploratory data analysis to

find the feature most correlated with price. From this, the feature accommodates is found to be most

highly correlated with the target variable price. This process of data exploration is expounded upon

in greater detail in 3.

Subsequently, we apply repeated 10-fold cross-validation on the 80% training data to choose the

degree of our polynomial. With input feature accommodates as our predictor, a model is fit for each

polynomial degree (ranging from 1-10) using each of the 10 folds as a test set once. This process is

repeated 5 times and averaged using the caret package. The average cross-validation RMSE over this

repeated 10-fold CV is calculated for each polynomial degree and the polynomial degree with the

lowest cross-validation RMSE is then chosen as the degree of our polynomial. Degree = 6 is chosen

as the outcome of this process of hyperparameter tuning.
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Figure E: Cross-validation RMSE for Tuning Degree of Polynomial

4.4 Boosting

Decision trees are a non-parametric supervised machine learning method that can be used for

regression. We apply a gradient boosting algorithm to decision trees, used as our "weak learner" in

this ensemble method, where we use a gradient descent algorithm to minimize loss when adding

models to the ensemble[6]. At each step, a new weak model is trained to predict the "error" and

improve the ensemble model. This iterative process is stopped when a stopping criterion is met. For

our project, this stopping criterion is defined as a maximum number of iterations[8].

We apply gradient boosting through the gbm function in the caret package. In the caret package,

there are several tuning parameters for the gbm function: number of iterations (n.trees), complexity of

the tree (interaction.depth), learning rate (shrinkage), and minimum number of training set samples

in a node to commence splitting (n.minobsinnode).

We set these tuning parameters to be: n.trees = 1000, interaction.depth = 2, and n.minobsinnode

= 10. For the shrinkage tuning parameter, we test a sequence of 61 different λ values ∈ [10-6, 1]

through a validation set approach to find the optimal shrinkage parameter that achieves the lowest

cross-validated RMSE on our test set. λ = 0.2512 achieves the lowest test error and is chosen as a

result of this process of cross-validation.
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Figure F: Gradient Boosting Cross-validation RMSE for Choosing λ Shrinkage Parameter

4.5 Evaluation

Our models are evaluated using RMSE, which is derived from the closely related Mean Squared Error

(MSE). MSE is a metric that measures the average of the squares of the errors - that is, the average

squared difference between the estimated value and the actual value. RMSE is simply the square root

of MSE. We provide details of MSE and RMSE computation below.

MSE =

D∑
i=1

(xi − yi)
2 (2)

RMSE =
√
MSE (3)

We opt to use RMSE rather than Residual Sum of Squares (RSS) for evaluating prediction accuracy

for several reasons. As compared to RSS, RMSE allows for more convenient comparisons between

training and cross-validation results. RSS as a metric is dependent on the number of observations the

residuals are being calculated over. Consequently, it will be lower for K-fold cross-validation since

each fold comprises only a portion of the data. The resulting RSS metric (for K-fold cross-validation)

will be ∼1/K the size of the training RSS on the full data. With RMSE, we can look at the results for

cross-validation on the same scale as with the full training data. This allows for more interpretable

results when assessing prediction accuracy between our models or choosing tuning parameters -

particularly when K-fold cross-validation is involved.

While we use K-fold cross-validation on the 80% training data for choosing most of our tuning

parameters, we opt for a validation set approach for assessing our models. The number of parameters

and size of our dataset renders implementing K-fold cross-validation methods computationally
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infeasible for our gradient boosting algorithm. As a result, for homogeneity and easier comparisons,

all models are tested with a validation set approach on the 20% held-out data.

5 Results and Comparative Analysis

We begin this comparative analysis with a comparison of cross-validation RMSE across our four

fitted models. Forward selection has a RMSE of 98.32, LASSO has a RMSE of 100.07, polynomial

regression has a RMSE of 115.88, and boosting has a RMSE of 85.11. These results are summarized

in the following bar plot.

Figure G: Summary of RMSE Across All Models

Forward selection and LASSO achieve comparable predictive performance. On the other hand, our

boosting algorithm results in a substantial increase in performance through a 15% decrease in RMSE

as compared to forward selection and LASSO. We hypothesize that nonlinearities are likely to be

present in the data that are being explained by our nonlinear boosting method, resulting in a lower test

RMSE. This is confirmed by the plot of residual vs. fitted values from our forward selection model.
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Figure H: Residual vs Fitted Plot for Forward Selection

From the plot of residual vs fitted values, we see that there is a definite nonlinear trend in our

data. Additionally, the data appears to fan out in a band of nonlinear width, which is indicative of

heteroscedasticity/non-constant variance.

Across all models, our polynomial model achieves the worst performance by RMSE. Since our

polynomial model is built simply by using the quantitative predictor with the highest correlation with

price, we can conclude that the addition of qualitative/categorical predictors contributes significant

predictive power in forecasting price.

Next, we will compare the significance of individual features through a process of robust feature

selection[14]. Robust feature selection is a topic of recent interest in machine learning involving

ensemble feature selection where multiple feature selection techniques are combined to yield more

robust results[15]. These methods commonly produce more robust results than a single feature

selection technique. To do this, we will obtain a feature subset by examining overlapping features

across our forward selection, LASSO, and boosting methods. Features selected through this ensemble

process will form a robust feature subset for price prediction of AirBnB listings.

Below, we present a table contrasting the features selected by forward selection against the features

selected by LASSO as a result of the applied shrinkage1. We also present a plot of variable importance

to visualize the 10 most important predictors in the gradient boosted model. A full summary of the

LASSO and forward selection models with significance levels for individual coefficients is available

in the appendix7.

1Features in common are denoted in bold
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Table 2: Features Selected by LASSO vs Forward Selection

Features selected by LASSO Features selected by forward selection

property_type property_type

room_type room_type

accommodates accommodates

bathrooms bathrooms

cancellation_policy cancellation_policy

cleaning_fee cleaning_fee

city city

first_review first_review

host_has_profile_pic host_has_profile_pic

host_response_rate host_response_rate

instant_bookable instant_bookable

last_review last_review

latitude latitude

longitude longitude

number_of_reviews number_of_reviews

bed_type bedrooms

host_identity_verified review_scores_rating

host_since beds
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Figure I: Variable Importance for Boosting Algorithm

We notice that in the gradient boosted model, quantitative features that indicate the maximum

occupancy of the listing (bedrooms, bathrooms, accommodates) stand out as significantly more

important. For forward selection and LASSO, there is significant overlap in the features selected.

Both algorithms select 18 features with 15 of them in common.

For robustness, we now present a table of the overlapping features across our models. These features

are common amongst the 10 most important features for boosting, features selected by LASSO, and

features selected by forward selection. Features presented in this table are shown to be significant

across three different models and are identified as the most robust features for predicting price through

our process of robust feature selection.

Table 3: Outcome from Robust Feature Selection

Final List of Overlapping Features

bathrooms

longitude

accommodates

room_type

latitude

property_type

city

number_of_reviews
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Results confirm the preliminary hypothesis from our exploratory data analysis: quantitative predictors

that are signals of maximum occupancy of the listing (bathrooms, accommodates) appear to be

significant for forecasting the price of an AirBnB listing across all three models. Additionally,

location has a significant impact on AirBnB pricing, as confirmed by the inclusion of geographic

features latitude, longitude, and city as significant predictors across all three models. This conclusion

agrees with our earlier exploratory data analysis visualizing the distribution of price of AirBnB

listings when stratified by city3.

Besides maximum occupancy and geography, other features that appear to be significant for fore-

casting price of AirBnB listings are the type of booking (room_type, property_type) and how well

reviewed the host is (number_of_reviews).

6 Conclusion

The ubiquity of AirBnB has rendered it a mainstay in the vacation home rental space for the last

decade. The development of machine learning algorithms that can assist with accurate prediction of

AirBnB prices could prove instrumental in ensuring fair-valued transactions for both parties in the

AirBnB marketplace.

In accordance with our obtained results, we have the highest likelihood of obtaining better prediction

accuracy of AirBnB list price when it applied to the boosting model. We attribute this to nonlinearities

present in the data which allow boosting, a nonlinear method, to outperform our other implemented

methods. In juxtaposition, the polynomial regression method achieves the worst performance out of

all our tested models. This can be attributed to the significance of categorical predictors - omitting

key categorical predictors in favor of solely quantitative predictors in a polynomial regression results

in poor prediction accuracy despite accounting for nonlinearities.

In terms of individual input features, we find that features indicative of maximum occupancy (bath-

rooms, accommodates) and features indicative of geographic location (longitude, latitude, city) carry

the most significance for predicting AirBnB list price as identified through a process of robust feature

selection.

Since our most flexible model (gradient boosting) has the lowest test RMSE, a potential area for future

expansion of this research work is in fitting more flexible methods for price prediction. These could

potentially include the implementation of neural networks for AirBnB price prediction, generalized

additive models (GAMs), or nonparametric kernel regressions. As mentioned briefly in 2, in this

project, we opt for model interpretability over minimizing bias to better suit our research goals.

However, with nonlinear trends discovered in the data, fitting and comparing more flexible methods
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could potentially result in better predictive performance. The inclusion of appropriate interaction

terms, which we do not implement here, could also plausibly prove to be informative.

A limitation of our work, however, is the potential for unaccounted variations in AirBnB pricing.

In this project, we account for geographic variations through the inclusion of relevant geographic

features. Geographic variations in pricing, however, are not the only variations that could plausibly

be present. Seasonal variations in pricing, for example, could potentially be present and unaccounted

for. This provides another avenue for potential expansion of this research work. As an example, since

our data is labelled, one could potentially combine both supervised and unsupervised approaches in a

sequential fashion by first implementing a supervised prediction model to identify important features.

Subsequently, Ward’s method could be applied through an unsupervised hierarchical cluster analysis

to understand and type clusters[1]. These clusters could potentially expose unique demographic

conditions that drive cluster creation and account for variations.
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7 Appendix

Table 4: Full List of Input Features

Feature Description

log_price price in log scale

price price of listing

property_type factor; type of property

room_type factor; type of room

accommodates maximum number of occupants

bathrooms number of bathrooms in listing

bed_type factor; type of bed in listing

cancellation_policy factor; strict, moderate, flexible

cleaning_fee boolean indicating whether a cleaning fee is charged

city factor; city of listing

first_review date of first review

host_has_profile_pic boolean indicating whether host has a profile picture

host_identity_verified boolean indicating whether host identity is verified

host_response_rate numeric; 0-100

host_since date of host registration on site

instant_bookable boolean indicating whether listing can be instantly booked

last_review date of most recent review

latitude numeric; latitude measurement of listing

longitude numeric; longitude measurement of listing

number_of_reviews number of reviews for the listing at the time of survey

review_scores_rating numeric; 0-100

bedrooms number of bedrooms in the listing

beds number of beds in the listing
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Figure J: Forward Selection Model Summary

Figure K: Polynomial Regression Model Summary
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